

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2007

3890-2/7890-2/MS/R/07

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

 Telephone:
 0870 870 6622

 Facsimile:
 0870 870 6621

 E-mail:
 publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	11
4724	Core Mathematics 4	15
4725	Further Pure Mathematics 1	19
4726	Further Pure Mathematics 2	25
4727	Further Pure Mathematics 3	31
4728	Mechanics 1	37
4729	Mechanics 2	43
4730	Mechanics 3	47
4731	Mechanics 4	53
4732	Probability & Statistics 1	59
4733	Probability & Statistics 2	65
4734	Probability & Statistics 3	69
4735	Probability & Statistics 4	75
4736	Decision Mathematics 1	79
4737	Decision Mathematics 2	85
*	Grade Thresholds	91

				Square one bracket to give an expression of the form $ax^2 + bx + c$	
4721	Mark	Sche	ŧme	June 20. Jun	Pop.
1	(4x2 + 20x + 25) - (x2 - 6x + 9) = 3x ² + 26x + 16	M1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \neq 0, b \neq 0, c \neq 0)$	YO,COM
		A1		One squared bracket fully correct	
		A1	3	All 3 terms of final answer correct	
	Alternative method using difference of two squares:				
	(2x + 5 + (x - 3))(2x + 5 - (x - 3)) = (3x + 2)(x + 8) = 3x ² + 26x + 16			 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct 	
2 (a)(i)		<u> </u>	3		
<i>Σ</i> (α)(ι)		B1		Excellent curve for $\frac{1}{x}$ in either quadrant	
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant	
(ii)				SR B1 Reasonably correct curves in 1 st and 3 rd quadrants	
(")		B1	1	Correct graph, minimum point at origin, symmetrical	
(b)	Stretch	B1			ĺ
(~,	Scale factor 8 in y direction or scale factor $\frac{1}{2}$ in x direction	B1	2 5		
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5} \times \sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90} \times \sqrt{2}$	M1			
	$= 6\sqrt{5}$	A1	2	Correctly simplified answer	
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified	
	$= 15\sqrt{5}$	A1	3	сао	
			5		

				Www.myman June 20 Uses $b^2 - 4ac$ (involving k) $16 - 4k^2$ Attempts $b^2 - 4ac = 0$ (involving k) or	143
4721	Mark	k Sche	me	June 20. Arth	in the second se
	2				OUD
4 (i)	$(-4)^2 - 4 \times k \times k$ = 16 - 4k ²	M1 A1		Uses $b^2 - 4ac$ (involving <i>k</i>) 16 - 4k ²	.com
(ii)	$16 - 4k^2 = 0$	M1		Attempts $b^2 - 4ac = 0$ (involving <i>k</i>) or attempts to complete square (involving	
	$k^{2} = 4$ k = 2 or $k = -2$	B1 B1	3	<i>k</i>)	
			5		
5 (i)	Length = $20 - 2x$	M1		Expression for length of enclosure in terms of x	
	Area = $x(20 - 2x)$ = $20x - 2x^2$	A1	2	Correctly shows that area = $20x - 2x^2$ AG	
(ii)	$\frac{dA}{dx} = 20 - 4x$	M1		Differentiates area expression	
	For max, $20 - 4x = 0$			4.	
	x = 5 only	M1	I	Uses $\frac{dy}{dx} = 0$	
	Area = 50	A1 A1	4	ax	
		\downarrow	6		4
6	Let $y = (x + 2)^2$ $y^2 + 5y - 6 = 0$	B1		Substitute for $(x + 2)^2$ to get $y^2 + 5y - 6 (= 0)$	
	(y + 6)(y - 1) = 0	M1 A1		Correct method to find roots Both values for y correct	
	y = -6 or y = 1	M1	I	Attempt to work out x	
	$(x + 2)^2 = 1$	A1	I	One correct value	
	x = -1' or $x = -3$	A1	6 6	Second correct value and no extra real values	
7 (a)	$f(x) = x + 3x^{-1}$	M1		Attempt to differentiate	
	$f'(x) = 1 - 3x^{-2}$	A1		First term correct	
		A1		x ⁻² soi www	
		A1	4	Fully correct answer	
(b)	$\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}$	M1		Use of differentiation to find gradient	
	dx = 2	B1		$\frac{5}{2}x^{c}$	
		B1		$kx^{\frac{3}{2}}$	
	When x = 4, $\frac{dy}{dx} = \frac{5}{2}\sqrt{4^{3}}$	M1		$\sqrt{4^3}$ soi	
	= 20	A1	5	SR If 0 scored for first 3 marks, award	
	<u> </u>		9	B1 if $\sqrt{4^n}$ correctly evaluated.	J

			mm.my	2
4721	Mark	Scheme	June 20. Main	SCIO,
8 (i)	$(x + 4)^{2} - 16 + 15$ = (x + 4) ² - 1	B1 M1 A1 3	a = 4 15 – their a^2 cao in required form	ud.com
(ii)	(-4, -1)	B1 ft B1 ft 2	Correct x coordinate Correct y coordinate	
		M1 A1	Correct method to find roots -5, -3	
(iii)	$x^{2} + 8x + 15 > 0$ (x + 5)(x + 3) > 0	M1	Correct method to solve quadratic inequality eg +ve quadratic graph	
	x < -5, x > -3	A1 4	x < -5, x > -3 (not wrapped, strict inequalities, no 'and')	
9 (i)	$(x - 3)^2 - 9 + y^2 - k = 0$ $(x - 3)^2 + y^2 = 9 + k$ Centre (3, 0)	B1 B1	$(x-3)^2$ soi Correct centre	
	$9 + k = 4^2$ k = 7	M1 A1 4	Correct value for <i>k</i> (may be embedded)	
			Alternative method using expandedform:Centre $(-g, -f)$ M1Centre $(3, 0)$ A1	
			$4 = \sqrt{f^{2} + g^{2} - (-k)} \qquad M1$ k = 7 A1	
(ii)	$(3 - 3)^2 + y^2 = 16$ y ² = 16 y = 4	M1 A1	Attempt to substitute $x = 3$ into original equation or their equation $y = 4$ (do not allow ± 4)	
	Length of AB = $\sqrt{(-1-3)^2} + (0-4)^2$	M1	Correct method to find line length using Pythagoras' theorem	
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16+a^2}$	
	$= 4\sqrt{2}$	A1 5	сао	
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft		
	y-0 = m(x + 1) or $y-4 = m(x - 3)$	M1 A1 3	Attempts equation of straight line through their A or B with their gradient Correct equation in any form with	
	y = x + 1	12	simplified constants	

4721	Mark	Scheme	Www.mymainschoud June 20. Tainschoud Correct method to find roots Correct brackets or formula
10 (i)	(3x + 1)(x - 5) = 0 x = $\frac{-1}{3}$ or x = 5	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
(ii)		B1	SR B1 for $x = 5$ spotted www
(ii)		Ы	Positive quadratic (must be reasonably symmetrical)
	· · · · · · · · · · · · · · · · · · ·	B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 x = 3	M1* A1	Equating their gradient expression to 4
	On curve, when $x = 3$, $y = -20$	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method:		
	$3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0$ has one solution	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$ (-18) ² - (4 x 3 x (-5 -c)) = 0	M1	Use of discriminant = 0
	$(-18)^2 - (4 \times 3 \times (-5 - c)) = 0$	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32

4722 Mark Sch	ıeme	State $u_2 = 12$ Correct u_3 and u_4 from their u_2
1 (i) $u_2 = 12$ $u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	$\begin{vmatrix} B1 \\ B1\sqrt{2} \end{vmatrix}$	State $u_2 = 12$ Correct u_3 and u_4 from their u_2
(ii) $S_{20} = \frac{15(1-0.8^{20})}{1-0.8}$ = 74.1	M1 A1 A1 3	Attempt use of $S_n = \frac{a(1-r^n)}{1-r}$, with $n = 20$ or 19 Obtain correct unsimplified expression Obtain 74.1 or better
Ŭ.K.	M1 A2	List all 20 terms of GP Obtain 74.1
2 $(x + \frac{2}{x})^4 = x^4 + 4x^3(\frac{2}{x}) + 6x^2(\frac{2}{x})^2 + 4x(\frac{2}{x})^3 + (\frac{2}{x})^3$ = $x^4 + 8x^2 + 24 + \frac{32}{x^2} + \frac{16}{x^4}$ (or equiv) OR	4 M1* M1* A1dep* A1 A1 5	Attempt expansion, using powers of x and $2/x$ (or the two terms in their bracket), to get at least 4 terms Use binomial coefficients of 1, 4, 6, 4, 1 Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
Ŭ <i>K</i>	M1* M1* A1dep*	Attempt expansion using all four brackets Obtain expansion containing the correct 5 powers only (could be unsimplified powers eg x^3 . x^{-1}) Obtain two correct, simplified, terms
	A1 A1 5	Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
3 $\log 3^{(2x+1)} = \log 5^{200}$ $(2x+1)\log 3 = 200\log 5$	M1 M1 A1	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers)
$2x + 1 = \frac{200 \log 5}{\log 3}$ $x = 146$	M1 A1 5	Attempt solution of linear equation Obtain $x = 146$, or better
OR $(2x + 1) = \log_3 5^{200}$ $2x + 1 = 200\log_3 5$	M1 M1 A1 M1 A1 5	Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better
4 (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$	M1 A1	Attempt <i>y</i> -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv
≈ 0.25×23.766 ≈ 5.94 (ii) This is an underestimate	A1 4 *B1	Obtain 5.94 or better (answer only is 0/4) State underestimate
(ii) This is an underestimateas the tops of the trapezia are below the curve	*B1 B1dep*B1 2	

Mark Scheme

					Use $\cos^2 \theta = 1 - \sin^2 \theta$ Show given equation correctly
472	2	Mark Sche	eme		June 2007
5	(i)	$3(1 - \sin^2 \theta) = \sin \theta + 1$	M1		Use $\cos^2 \theta = 1 - \sin^2 \theta$
	(ii)	$3 - 3\sin^{2} \theta = \sin \theta + 1$ $3\sin^{2} \theta + \sin \theta - 2 = 0$ $(3\sin \theta - 2)(\sin \theta + 1) = 0$ $\sin \theta = \frac{2}{3} \text{ or } -1$ $\theta = 42^{\circ}, 138^{\circ}, 270^{\circ}$	A1 M1 A1 A1 A1 A1√	2 5	Attempt to solve quadratic equation in $\sin \theta$ Both values of $\sin \theta$ correct Correct answer of 270° Correct answer of 42° For correct non-principal value answer, following their first value of θ in the required range (any extra values for θ in required range is max 4/5) (radians is max 4/5)
					SR: answer only (or no supporting method) is B1 for 42° , B1 $$ for 138 $^{\circ}$, B1 for 270 $^{\circ}$
			 	7	
6	(a)	(i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	M1		Expand and attempt integration
			A1 B1	3	Obtain $\frac{1}{4}x^4 - 2x^2$ (A0 if \int or dx still present) + c (mark can be given in (b) if not gained here)
		(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_{l}^{6}$	M1		Use limits correctly in integration attempt (ie $F(6)$ - $F(1)$)
		$=(324 - 72) - (\frac{1}{4} - 2)$ $= 253^{3}/_{4}$	A1	2	Obtain 253 ³ / ₄ (answer only is M0A0)
	(b)	$\int 6x^{-3} \mathrm{d}x = -3x^{-2} + c$	B1		Use of $\frac{1}{x^{3}} = x^{-3}$
		, ,	M1 A1	3	Obtain integral of the form kx^2 Obtain correct $-3x^2$ (+ c) (A0 if \int or dx still present, but only penalise once
				ភ	in question)
7	(9)	$S_{70} = \frac{70}{2} \{ (2 \times 12) + (70 - 1)d \}$	M1	8	Attempt S ₇₀
,	(**)	35(24 + 69d) = 12915	A1 M1		Obtain correct unsimplified expression Equate attempt at S_{70} to 12915, and attempt to find
		<i>d</i> = 5	A1	4	d Obtain $d = 5$
OR		$\frac{70}{2}\{12+l\}=12915$	M1		Attempt to find <i>d</i> by first equating $n/2(a + l)$ to
		<i>l</i> = 357	A1		12915 Obtain $l = 357$
		12 + 69d = 357 d = 5	M1 A1		Equate u_{70} to l Obtain $d = 5$
	(b)	ar = -4	B1		Correct statement for second term
		$\frac{a}{1-r} = 9$	B1		Correct statement for sum to infinity
		$\frac{-4}{r} = 9 - 9r \qquad \text{or} a = 9 - \left(9 \times \frac{-4}{a}\right)$ $9r^2 - 9r - 4 = 0 \qquad a^2 - 9a - 36 = 0$	M1 A1		Attempt to eliminate either <i>a</i> or <i>r</i> Obtain correct equation (no algebraic denominators/brackets)
		(3r-4)(3r+1)=0 $(a+3)(a-12)=0$	M1		Attempt solution of three term quadratic equation
		$r = \frac{4}{3}, r = -\frac{1}{3}$ $a = -3, a = 12$	A1		Obtain at least $r = -\frac{1}{3}$ (from correct working only)
	Hen	ce $r = -\frac{1}{3}$	A1	7	Obtain $r = -\frac{1}{3}$ only (from correct working only)
			,	11	SR: answer only / T&I is B2 only
			<u> </u>	11	

1722		Mark Sch	neme	June 2007
3 (i)	$\frac{1}{2}$	$\times AB^2 \times 0.9 = 16.2$	M1	Use $\left(\frac{1}{2}\right)r^2\theta = 16.2$ Confirm $AB = 6$ cm (or verify $\frac{1}{2} \ge 6^2 \ge 0.9 = 16.2$
		$AB^2 = 36 \implies AB = 6$	A1 2 16.2)	Confirm $AB = 6$ cm (or verify $\frac{1}{2} \ge 6^2 \ge 0.9 = 10^{-10}$
(ii)	$\frac{1}{2}$	$\times 6 \times AC \times \sin 0.9 = 32.4$	M1*	Use $\Delta = \frac{1}{2} bc \sin A$, or equiv
	A	C = 13.8 cm	M1dep* A1 3	Equate attempt at area to 32.4 Obtain $AC = 13.8$ cm, or better
(iii) B	$C^{2} = 6^{2} + 13.8^{2} - 2 \times 6 \times 13.8 \times \cos 0.9$	M1 A1√	Attempt use of correct cosine formula in $\triangle ABC$ Correct unsimplified equation, from their AC
	Η	ence $BC = 11.1$ cm	A1	Obtain $BC = 11.1$ cm, or anything that rounds to this
	В	$D = 6 \times 0.9 = 5.4 \mathrm{cm}$	B1	State $BD = 5.4$ cm (seen anywhere in question)
	Η	ence perimeter = $11.1 + 5.4 + (13.8 - 6)$ = 24.3 cm	M1 A1 6	Attempt perimeter of region <i>BCD</i> Obtain 24.3 cm, or anything that rounds to this
		– 24.5 čm	Al 6	Obtain 24.5 cm, of anything that founds to this
) (i) (a	f $(-1) = -1 + 6 - 1 - 4 = 0$	B1 1	Confirm $f(-1) = 0$, through any method
	(b	() $x = -1$	B1	State $x = -1$ at any point
		$f(x) = (x+1)(x^2+5x-4)$	M1	Attempt complete division by $(x + 1)$, or equiv
			A1 A1	Obtain $x^2 + 5x + k$ Obtain completely correct quotient
		$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1	Attempt use of quadratic formula, or equiv, find
		$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	A1 6	roots Obtain $\frac{1}{2}(-5 \pm \sqrt{41})$
(ii)) (a	$\log_2(x+3)^2 + \log_2 x - \log_2(4x+2) = 1$	B1	State or imply that $2\log (x + 3) = \log (x + 3)^2$
			M1	Add or subtract two, or more, of their algebraic logs correctly
		$\log_2\left(\frac{(x+3)^2 x}{4x+2}\right) = 1$	A1	Obtain correct equation (or any equivalent, with
				single term on each side)
		$\frac{(x+3)^2 x}{4x+2} = 2$	B1	Use $\log_2 a = 1 \implies a = 2$ at any point
		$(x^2 + 6x + 9)x = 8x + 4$		
		$x^3 + 6x^2 + x - 4 = 0$	A1 5	Confirm given equation correctly
	(b) $x > 0$, otherwise log $_2x$ is undefined	B1*	State or imply that $\log x$ only defined for $x > 0$
		$x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1√dep*	State $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$ (or x = 0.7) only, following their
			2	single positive root in (i)(b)
			14	

WWWN. MY MARKEN June 20. Rainscioud.com

1 (i)	Attempt use of product rule	M1		
	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	A1		2 or equiv
	[Or: (following complete expansion and differentiati	ion te	rm b	by term)
	Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$	B2		allow B1 if one term incorrect]
(ii)	Obtain derivative of form $kx^3(3x^4+1)^n$	M1		any constants <i>k</i> and <i>n</i>
	Obtain derivative of form $kx^3(3x^4 + 1)^{-\frac{1}{2}}$	M1		
	Obtain correct $6x^3(3x^4+1)^{\frac{1}{2}}$	A1		3 or (unsimplified) equiv
2	Identify critical value $x = 2$	B1		
	Attempt process for determining both critical values	M1		
	Obtain $\frac{1}{3}$ and 2	A1		
	Attempt process for solving inequality	M1		table, sketch;
	Attempt process for solving inequality	1011		implied by plausible answer
	Obtain $\frac{1}{3} < x < 2$	A1	5	
3 (i)	Attempt correct process for composition	M1		numerical or algebraic
	Obtain (16 and hence) 7	A1	2	
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of y so far
()	Obtain $(x-3)^2$	A1	2	
(iii)	Sketch (more or less) correct $y = f(x)$	B1		with 3 indicated or clearly implied on <i>y</i> -axis, correct curvature, no maximum point
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	B1 B1	3	right hand half of parabola only
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv
	Substitute limits in expression of form $(2x + 1)^n$			
	and subtract the correct way round	M1		using adjusted limits if subn used
	Obtain 30	A1	4	
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k
	Identify k as $\frac{1}{3} \times 6.5$	A1		
	Obtain 29.6	A1	3	or greater accuracy (29.554566)
	[SR: (using Simpson's rule with 4 strips)			- ` ` ` ` `
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$)		
	and hence 29.9	B1		or greater accuracy (29.897)]

						June 20. Nathscloud.com
4723		Mark Sci	heme)		June 20 June 10
5 (i)	State e	-0.04t = 0.5	B1		or equiv	SCIOUD
	Attemp	t solution of equation of form $e^{-0.04t} = k$	M1		using sound process; maybe	MOD:
	Obtain	17	Al	3	implied or greater accuracy (17.328)	
(ii)	Differen	ntiate to obtain form $k e^{-0.04t}$	*M	1	constant k different from 240	
		$(\pm) 9.6e^{-0.04t}$	A1		or (unsimplified) equiv	
	-	attempt at first derivative to (\pm) 2.1 and solution	M1		dep *M; method maybe implie	ъđ
	Obtain		A1	4	or greater accuracy (37.9956	
6 (i)	Obtain	integral of form $k_1 e^{2x} + k_2 x^2$	M1		any non-zero constants k_1, k_2	
		correct $3e^{2x} + \frac{1}{2}x^2$	A1			
	Obtain	$3e^{2a} + \frac{1}{2}a^2 - 3$	A1			
	-	definite integral to 42 and attempt	1.41		· ,	
		ngement n $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$	M1 A1	5	using sound processes AG; necessary detail required	
	Comm			U	ris, necessary acaminequinea	
(ii)		correct first iterate 1.348	B1			
	2 iterate	t correct process to find at least es	M1			
		at least 3 correct iterates	A1		· · · · · · · · · · · · · · · · · · ·	
	Obtain	1.344	A1	4	answer required to exactly 3 d. allow recovery after error	p.;
		$[1 \rightarrow 1.34844 \rightarrow 1.3438$	$2 \rightarrow 1$.34	389]	
7 (i)		orrect general shape (alternating above				
		ow x-axis) nore or less) correct sketch	M1 A1		with no branch reaching x-axis with at least one of 1 and -1	
	Diaw (i	note of less) concet sketch	ЛІ	2	indicated or clearly implied	
(ii)	Attemp	t solution of $\cos x = \frac{1}{3}$	M1		maybe implied; or equiv	
		1.23 or 0.392π	A1	•	or greater accuracy	
	Obtain	5.05 or 1.61π	A1	3	or greater accuracy and no other within $0 \le x \le 2\pi$; penalise	ers
					answer(s) to 2sf only once	
(iii)	Either:	1	any	cor	stant k; maybe implied	
		Obtain $\tan \theta = 5$ Obtain two values only of form	A1			
		$\theta, \ \theta + \pi$ M1	wit	hin	$0 x 2 \leq \leq \pi$; allow degr	rees
		Obtain 1.37 and 4.51 (or 0.437π			at this stage	
		Obtain 1.37 and 4.51 (or 0.437π and 1.44π)	A1	4	allow ± 1 in third sig fig; or greater accuracy	eater
	<u>Or</u> :	(for methods which involve squaring,etc.)				
		Attempt to obtain eqn in one trig ratio Obtain correct value	M1 A1		$\tan^2 \theta = 25, \cos^2 \theta = \frac{1}{26}, \dots$	
		Attempt solution at least to find one			26,	
		value in first quadrant and one value in third	M1			
		Obtain 1.37 and 4.51				
		(or equivs as above)	A1		ignoring values in second and quadrants	fourth

4723

MWW. My Marks June 20. Painscioud.com

8 (i) Attempt use of quotient rule M1 allow for numerator 'wrong way round'; or equiv Obtain $\frac{(4\ln x + 3)\frac{4}{x} - (4\ln x - 3)\frac{4}{x}}{(4\ln x + 3)^2}$ Confirm $\frac{24}{x(4\ln x + 3)^2}$ A1 or equiv **3** AG; necessary detail required A1 Identify $\ln x = \frac{3}{4}$ (ii) B1 or equiv State or imply $x = e^{\frac{3}{4}}$ **B**1 Substitute e^k completely in expression for and deal with $\ln e^k$ term derivative M1 Obtain $\frac{2}{3}e^{-\frac{3}{4}}$ 4 or exact (single term) equiv A1 State or imply $\int \frac{4\pi}{x(4\ln x+3)^2} dx$ (iii) B1 Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$ or $k(4\ln x + 3)^{-1}$ *M1 any constant k Substitute both limits and subtract right way round M1 dep *M Obtain $\frac{4}{21}\pi$ 4 or exact equiv A1 Attempt use of either of $tan(A \pm B)$ identities 9 (i) M1 Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ B1 Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ or equiv (perhaps with tan 60° A1 still involved) Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ A1 **4** AG Use $\sec^2 \theta = 1 + \tan^2 \theta$ (ii) B1 Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ M1 or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735...$ Obtain $\tan^4 \theta = \frac{1}{2}$ A1 Obtain 37.2 A1 or greater accuracy Obtain 142.8 A1 5 or greater accuracy; and no others between 0 and 180

(iii) Attempt rearrangement of
$$\frac{\tan^2 \theta - 3}{1 - 3\tan^2 \theta} = k^2$$
 to form
 $\tan^2 \theta = \frac{f(k)}{g(k)}$ M1
Obtain $\tan^2 \theta = \frac{k^2 + 3}{2}$ A1

Obtain
$$\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$$

Observe that RHS is positive for all *k*, giving one value in each quadrant

A1 3 or convincing equiv

				S.o.i. in answer for both
4724	Mark Sche	June 2007 June 1007		
1	(i) Correct format $\frac{A}{x+2} + \frac{B}{x-3}$	M1		s.o.i. in answer
	A = 1 and $B = 2(ii) -A(x+2)^{-2} - B(x-3)^{-2} f.t.$	A1 √A1	2	for both
	Convincing statement that each denom > 0 State whole exp < 0 AG	B1 B1	3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks. 5
2	Use parts with $u = x^2$, $dv = e^x$	*M1		obtaining a result $f(x) + 7 - \int g(x)(dx)$
	Obtain $x^2 e^x - \int 2x e^x (dx)$	A1		
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$	M1		
	Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets	A1		s.o.i. eg $e + (-2x + 2)e^x$
	Use limits correctly throughout $e^{(1)}-2$ ISW Exact answer only	dep*M1 A1		Tolerate (their value for $x = 1$) (-0) Allow 0.718 \rightarrow M1
				6
3	Volume = $(k) \int_{0}^{n} \sin^2 x (dx)$	B1		where $k = \pi, 2\pi$ or 1; limits necessary
	Suitable method for integrating $\sin^2 x$	*M1		eg $\int + / -1 + / -\cos 2x (dx)$ or single
				integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x \left(\mathrm{d}x \right) = \frac{1}{2} \int 1 - \cos 2x \left(\mathrm{d}x \right)$	A1		or $-\sin x \cos x + \int \cos^2 x (dx)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1		or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly	dep*M1		
	Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	A1	6	<u>Beware</u> : wrong working leading to $\frac{1}{2}\pi^2$
4	(i) $\frac{\left(1+\frac{x}{2}\right)^{-2}}{=1+\left(-2\right)\left(\frac{x}{2}\right)+\frac{-2\cdot-3}{2}\left(\frac{x}{2}\right)^{2}+\frac{-2\cdot-3\cdot-4}{3^{\prime}}\left(\frac{x}{2}\right)^{3}}$	M1		Clear indication of method of ≥ 3 terms
	= 1 - x	B1		First two terms, not dependent on M1
	+ $\frac{3}{4}X^2 - \frac{1}{2}X^3$	A1		For both third and fourth terms $1 3 2 1 3$
	$(2+x)^{-2} = \frac{1}{4}$ (their exp of $(1+ax)^{-2}$) mult out	√B1		Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2}x\right < 1)$	B1	5	
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$ $-\frac{3}{2}(x^3)$	M1 √A1	r	Follow-through from $b + d$
	$-\frac{8}{3}$ (x)		2	$\frac{1}{2}$

				June 2007 June 2007
472	4 Mark Scho	eme		June 2007
5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1		Scioud.com
	$=\frac{-4\sin 2t}{-\sin t}$	A1		Accept $\frac{4\sin 2t}{\sin t}$ WWW
	$= 8 \cos t$ $\leq 8 \qquad AG$	A1 A1	4	with brief explanation eg $\cos t \le 1$
	(ii) Use $\cos 2t = 2\cos^2 t + /-1$ or $1 - 2\cos^2 t$	M1		<u>If starting with $y = 4x^2 + 1$, then</u>
	Use correct version $\cos 2t = 2\cos^2 t - 1$	A1		Subst $x = \cos t$, $y = 3 + 2\cos 2t$ M1
	Produce WWW $y = 4x^2 + 1$ AG	A1	3	Either substitute a formula for cos 2t M1
	(iii) U-shaped parabola abve <i>x</i> -axis, sym abt <i>y</i> -axis Portion between $(-1, 5)$ and $(1, 5)$	B1 B1	2	
	N.B. If (ii) answered or quoted before (i) attempted,	allow ii	n par	(i) B2 for $\frac{dy}{dx} = 8x$ +B1,B1 if earned. 9
6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1		
	Using $d(uv) = u dv + v du$ for the (3)xy term	M1		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{2}+3xy+4y^{2}\right)=2x+3x\frac{\mathrm{d}y}{\mathrm{d}x}+3y+8y\frac{\mathrm{d}y}{\mathrm{d}x}$	A1		
	Solve for $\frac{dy}{dx}$ & subst (x, y) = (2,3)	M1		or v.v. Subst now or at normal eqn stage;
				(M1 dep on either/both B1 M1 earned)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{13}{30}$	A1		Implied if grad normal = $\frac{30}{13}$
	Grad normal = $\frac{30}{13}$ follow-through	√B1		This f.t. mark awarded only if numerical
	Find equ any line thro (2,3) with any num grad 30x - 13y - 21 = 0 AEF	1 M1 A1	8	No fractions in final answer 8
7	(i) Leading term in quotient = $2x$ <u>Suff evidence</u> of division or identity process Quotient = $2x + 3$	B1 M1 A1		Stated or in relevant position in division
	Remainder = x	A1	4	Accept $\frac{x}{x^2 + 4}$ as remainder
	(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$	√B1		$2x+3+\frac{x}{x^2+4}$
	(iii) <u>Working with their expression in part (ii)</u> their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$	√B1		
	their $\frac{Cx}{x^2+4}$ integrated as $k \ln(x^2+4)$	M1		Ignore any integration of $\frac{D}{x^2 + 4}$
	$k = \frac{1}{2}C$	√A1		
	Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$	M1 A1	5	5
				10

				June 2007 s.o.i. Or $\frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$ & then $t = -20 \ln(6-h) (+c) \rightarrow A1+A1$
4724	Mark Sch	eme		June 2007 Arts
8	(i) Sep variables $eg \int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$	*M1		s.o.i. $\underline{Or} \frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$
	$LHS = -\ln(6-h)$	A1		& then $t = -20 \ln(6 - h)$ (+c) \rightarrow A1+A1
	$RHS = \frac{1}{20}t (+c)$	A1		
	Subst $t = 0, h = 1$ into equation containing 'c' Correct value of their c = $-(20)\ln 5$ WWW	dep*M1 A1		or (20) In 5 if on LHS
	Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG	A1	6	Must see $\ln 5 - \ln(6 - h)$
	(ii) When $h = 2$, $t = 20 \ln \frac{5}{4} = 4.46(2871)$	B1		Accept 4.5, $4\frac{1}{2}$
	(iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$			or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage
	 h = 2.97(2.9673467) [In (ii),(iii) accept non-decimal (exact) answers Accept truncated values in (ii),(iii). 	A1 but -1 d		$6-5e^{-0.5}$ or $6-e^{1.109}$ e.]
	(iv) Any indication of (approximately) 6 (m)	B1	1	10
9	(i) Use $-6i + 8j - 2k$ and $i + 3j + 2k$ only Correct method for scalar product	M1 M1		of <u>any</u> two vectors $(-6 + 24 - 4 = 14)$
	Correct method for magnitude	M1		of any vector $(\sqrt{36+64+4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene		4 5i	
	(ii) Indication that relevant vectors are parallel	M1		-6i + 8j - 2k & 3i + cj + k with some indic of method of attack
	c = -4	A1	2	$eg - 6 \mathbf{i} + 8\mathbf{j} - 2 \mathbf{k} = \lambda(3\mathbf{i} + c\mathbf{j} + \mathbf{k})$ $c = -4 WW \rightarrow B2$
	(iii) Produce 2/3 equations containing <i>t,u</i> (& c)	M1		eg $3 + t = 2 + 3u, -8 + 3t = 1 + cu$ and $2t = 3 + u$
	Solve the 2 equations not containing 'c' $t = 2, u = 1$	M1 A1		
	Subst their (<i>t</i> , <i>u</i>) into equation containing c $c = -3$	M1 A1	5	
	Alternative method for final 4 marks Solve two equations, one with 'c', for t and u in terms of c, and substitute into third equation	(M2)	-	
	c = -3	(A2)		11

				www.myn	12 12
472	5	Mark S	3chei	me June 20. (6	ths ch
1	EITHER a = 2 $b = 2\sqrt{3}$, OR $a = 2$ $b = 2\sqrt{3}$	M1 A1 M1 A1 M1 M1 A1 A1	4	me June 20. Main June 20. June 20	Out com
2	$(1^{3} =)\frac{1}{4} \times 1^{2} \times 2^{2}$ $\frac{1}{4}n^{2}(n+1)^{2} + (n+1)^{3}$ $\frac{1}{4}(n+1)^{2}(n+2)^{2}$	B1 M1 M1(indep) A1 A1	5	Show result true for $n = 1$ Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly Specific statement of induction conclusion	
3	$3\Sigma r^{2} - 3\Sigma r + \Sigma 1$ $3\Sigma r^{2} = \frac{1}{2}n(n+1)(2n+1)$ $3\Sigma r = \frac{3}{2}n(n+1)$	M1 A1 A1		Consider the sum of three separate terms Correct formula stated Correct formula stated	
	$\sum_{n^3} 1 = n$	A1 M1 A1	6 6	Correct term seen Attempt to simplify Obtain given answer correctly	
4	$(i) \frac{1}{2} \begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$	B1 B1	2	Transpose leading diagonal and negate other diagonal or solve sim. eqns. to get 1 st column Divide by the determinant or solve 2 nd pair to get 2 nd column	
	(ii) $\frac{1}{2} \begin{pmatrix} 2 & 0 \\ 23 & -5 \end{pmatrix}$	M1 M1(indep) A1ft A1ft	4 6	Attempt to use B ⁻¹ A ⁻¹ or find B Attempt at matrix multiplication One element correct, a.e.f, All elements correct, a.e.f. NB ft consistent with their (i)	


472	:5 M	ark Schem	е	une 20.	AM ASSIS
5	(i) $\frac{1}{r(r+1)}$ (ii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$ $\frac{1}{n+1}$	B1 M1 A1 B1ft M1 A1 c.a.o.	1 3 3 7	Show correct process to obtain given result Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii) Obtain correct answer a.e.f.	Y.COM
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values	
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma)^{2}$ = 9 - 4 = 5 (ii) (a) $\frac{3}{u^{3}} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ $2u^{3} + 6u^{2} - 9u + 3 = 0$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	a) M1 A1 ft M1 A1 M1 A1ft	2 2 2 8	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer Required expression is related to new	
				cubic stated or implied -(their "b" / their "a")	

1705	Mark Oaks		Show correct expansion process Show evaluation of a 2 x 2	142 133
4725	Mark Schen	ne	June 20. 73	The character of the second
7 (i)	M1	1	Show correct avacancies process	10UU.C.
7 (i)	M1 M1		Show correct expansion process Show evaluation of a 2 x 2	-OM
a(a-12) + 32	A1	3	determinant	
(ii)			Obtain correct answer a.e.f.	
$\det \mathbf{M} = 12$	M1	2		
non-singular	A1ft		Substitute $a = 2$ in their determinant	
(iii) EITHER	B1			
	M1		Obtain correct answer and state a	
OR			consistent conclusion	
	A1	3		
	M1		det $M = 0$ so non-unique solutions	
	Al		det M – 0 so non-unique solutions	
	Al		Attempt to solve and obtain 2	
			inconsistent equations	
			Deduce that there are no solutions	
			Substitute $a = 4$ and attempt to solve	
			Obtain 2 correct inconsistent	
			equations	
		8	Deduce no solutions	
8 (i) Circle, centre (3, 0),	B1B1		Sketch showing correct features	
<i>y</i> -axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR	
Straight line,	B1			
through $(1, 0)$ with +ve slope	B1			
In 1 st quadrant only (ii) Inside circle, below line,	B1 B2ft	6	Sketch showing correct region	
above x-axis	D21	$\begin{vmatrix} 0\\2 \end{vmatrix}$	SR: B1ft for any 2 correct features	
		8	Sit. Diff for any 2 concerticatures	

4725 M	lark Schem	e	Correct matrix
$\begin{array}{ c c c }9 & (i) & \left(\frac{\sqrt{2}}{0} & 0 \\ 0 & \sqrt{2}\right)\end{array}$	B1	1	Correct matrix
(ii) Rotation (centre <i>O</i>), 45 ⁰ , clockwise (iii)	B1B1B1	3	Sensible alternatives OK, must be a single transformation
	B1	1	Matrix multiplication or combination of transformations
$(iv) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$	M1 A1	2	For at least two correct images For correct diagram
(v) det $\mathbf{C} = 2$	B1		State correct value
area of square has been doubled	B1	2	State correct relation a.e.f.
		9	
10 (i) $x^{2} - y^{2} = 16$ and $xy = 15$	M1		Attempt to equate real and imaginary parts of $(x + iy)^2$ and 16+30i
	A1A1		Obtain each result
	M1		Eliminate to obtain a quadratic in x^2 or y^2
$\pm(5+3i)$	M1		Solve to obtain $x = (\pm) 5$ or $y = (\pm) 3$
(ii) $z = 1 \pm \sqrt{16 + 30i}$	A1	6	Obtain correct answers as complex numbers
	M1*		Use quadratic formula or complete the square
6 + 3i, -4 - 3i	A1 *M1dep A1 A1ft	5	Simplify to this stage Use answers from (i)
		11	Obtain correct answers

- 1 Correct formula with correct *r* Rewrite as $a + b\cos 6\theta$ Integrate their expression correctly Get $\frac{1}{3}\pi$
- 2 (i) Expand to $\sin 2x \cos^{1}/4\pi + \cos 2x \sin^{1}/4\pi$ Clearly replace $\cos^{1}/4\pi$, $\sin^{1}/4\pi$ to A.G.
 - (ii) Attempt to expand $\cos 2x$ Attempt to expand $\sin 2x$ Get $\frac{1}{2}\sqrt{2}$ (1 + 2x - 2x² - 4x³/3)
- M1 Allow $r^2 = 2 \sin^2 3\theta$ M1 $a, b \neq 0$ A1 $\sqrt{1}$ From $a + b\cos 6\theta$ A1 cao
- **B**1
- B1
- M1 Allow $1 2x^2/2$
- M1 Allow $2x 2x^3/3$
- A1 Four correct unsimplified terms in any order; allow bracket; AEEF SR Reasonable attempt at $f^n(0)$ for n=0 to 3 M1 Attempt to replace their values in Maclaurin M1 Get correct answer only A1
- M1 Allow C=0 here
- $M1\sqrt{May}$ imply above line; on their P.F.
- M1 Must lead to at least 3 coeff.; allow cover-up method for *A*
- A1 cao from correct method
- B1 $\sqrt{}$ On their A
- B1 $\sqrt{}$ On their *C*; condone no constant; ignore any $B \neq 0$
- M1 Two terms seen
- M1 Allow +
- A1
- A1 cao
- B1 On any $k\sqrt{1-x^2}$
- M1 In any reasonable integral
- A1
- SRReasonable sub.B1Replace for new variable and attempt
to integrate (ignore
limits)M1Clearly get $\frac{1}{2}\pi$ A1

3 (i) Express as $A/(x-1) + (Bx+C)/(x^2+9)$ Equate (x^2+9x) to $A(x^2+9) + (Bx+C)(x-1)$ Sub. for x or equate coeff.

Get A=1, B=0,C=9

- (ii) Get $A \ln(x-1)$ Get $C/3 \tan^{-1}(x/3)$
- 4 (i) Reasonable attempt at product rule Derive or quote diff. of $\cos^{-1}x$ Get $-x^2(1 - x^2)^{-\frac{1}{2}} + (1 - x^2)^{\frac{1}{2}} + (1 - x^2)^{-\frac{1}{2}}$ Tidy to $2(1 - x^2)^{\frac{1}{2}}$
 - (ii) Write down integral from (i) Use limits correctly Tidy to $\frac{1}{2}\pi$

MWW. My Marks June 20. Painscioud.com

5

(i)	Attempt at parts on $\int 1 (\ln x)^n dx$
	Get x $(\ln x)^n - \int^n (\ln x)^{n-1} dx$
	Put in limits correctly in line above
	Clearly get A.G.

- (ii) Attempt I_2 to I_2 as $I_3 = e 3I_2$ Continue sequence in terms of In Attempt I_0 or I_1 Get 6 - 2e
- 6 (i) Area under graph $(= \int 1/x^2 dx, 1 \text{ to } n+1)$ < Sum of rectangles (from 1 to *n*)

Area of each rectangle = Width x Height = $1 \times 1/x^2$

- (ii) Indication of new set of rectangles Similarly, area under graph from 1 to n
 > sum of areas of rectangles from 2 to n
 Clear explanation of A.G.
- (iii) Show complete integrations of RHS, using correct, different limits
 Correct answer, using limits, to one integral
 Add 1 to their second integral to get complete series
 Clearly arrive at A.G.
- (iv) Get one limit Get both 1 and 2

- M1 Two terms seen
- A1 M1

A1 $\ln e = 1$, $\ln 1 = 0$ seen or implied

- M1 A1 $I_2 = e - 2I_1$ and/or $I_1 = e - I_0$
- M1 $(I_0 = e-1, I_1 = 1)$

A1 cao

- B1 Sum (total) seen or implied eg diagram; accept areas (of rectangles)
- B1 Some evidence of area worked out seen or implied

B1

- B1 Sum (total) seen or implied
- B1 Diagram; use of left-shift of previous areas
- M1 Reasonable attempt at $\int x^{-2} dx$
- A1
- M1 A1
 - B1 Quotable
 - B1 Quotable; limits only required

- Use correct definition of cosh or sinh x Attempt to mult. their cosh/sinh Correctly mult. out and tidy Clearly arrive at A.G.
 - (ii) Get $\cosh(x-y) = 1$ Get or imply (x-y) = 0 to A.G.
 - (iii) Use $\cosh^2 x = 9$ or $\sinh^2 x = 8$ Attempt to solve $\cosh x = 3$ (not -3) or $\sinh x = \pm \sqrt{8}$ (allow $\pm \sqrt{8}$ or $\pm \sqrt{8}$ only) Get at least one x solution correct Get both solutions correct, x and y
- 8 (i) $x_2 = 0.1890$ $x_3 = 0.2087$ $x_4 = 0.2050$ $x_5 = 0.2057$ $x_6 = 0.2055$ $x_7 (= x_8) = 0.2056$ (to x_7 minimum) $\alpha = 0.2056$
 - (ii) Attempt to diff. f(x)Use α to show $f'(\alpha) \neq 0$
 - (iii) $\delta_3 = -0.0037$ (allow -0.004)
 - (iv) Develop from $\delta_{10} = f'(\alpha) \ \delta_9$ etc. to get δ_i or quote $\delta_{10} = \delta_i f'(\alpha)^7$ Use their δ_i and $f'(\alpha)$ Get 0.00000028

- B1 Seen anywhere in (i)
- M1 A1√

A1 Accept e^{x-y} and e^{y-x}

- M1
- A1
- B1 M1 $x = \ln(3 + \sqrt{8})$ from formulae book or from basic cosh definition
- A1
- A1 x, y = $\ln(3 \pm 2\sqrt{2})$; AEEF
 - SR Attempt $tanh = \sinh/\cosh B1$
 - Get $\tanh x = \pm \sqrt{8/3}$ (+ or -) M1 Get at least one sol. correct A1
 - Get both solutions correct A1
 - SR Use exponential definition Get quadratic in e^x or e^{2x} M1 Solve for one correct x A1 Get both solutions, x and y A1
- B1
- B1 $\sqrt{1}$ From their x_1 (or any other correct)
- B1 $\sqrt{}$ Get at least two others correct, all to a minimum of 4 d.p.
- B1 cao; answer may be retrieved despite some errors
- M1 $k/(2+x)^3$
- A1 $\sqrt{\text{Clearly seen, or explain } k/(2+x)^3 \neq 0}$ as $k \neq 0$; allow ± 0.1864
- SR Translate $y=1/x^2$ M1 State/show $y=1/x^2$ has no TP A1
- B1 $\sqrt{\text{Allow}} \pm$, from their x₄ and x₃
- M1 Or any δ_1 eg use $\delta_9 = x_{10} x_9$
- M1
- A1 Or answer that rounds to \pm 0.00000003

MWWW. My Marks June 20. Mainscioud.com

9 (i) Quote x = aAttempt to divide out

Get y = x - a

(ii) Attempt at quad. in x (=0) Use ${}^{b^2-} 4ac \ge 0$ for real x Get y² + 4a² ≥ 0 State/show their quad. is always >0

(iii)

B1

- M1 Allow M1 for y=x here; allow
- A1 (x-a) + k/(x-a) seen or implied
- A1 Must be equations

M1

M1 Allow >

A1

- B1 Allow \geq
- B1 $\sqrt{1}$ Two asymptotes from (i) (need not be labelled)
- B1 Both crossing points

B1 $\sqrt{}$ Approaches – correct shapeSRAttempt diff. by quotient/productruleM1Get quadratic in x for dy/dx = 0and note $b^2 - 4ac < 0$ A1Consider horizontal asymptotesB1Fully justify answerB1

Mark Scheme

4727 Mar	k Schem	Scheme June 20 B1 1 For verifying result AG B1 For stating circle				
1 (i) $z z^* = r e^{i\theta} \cdot r e^{-i\theta} = r^2 = z ^2$	B1 1	For verifying result AG	SUD.COM			
(ii) Circle Centre 0 (+0i) OR (0, 0) OR O, radius 3	B1 B1 2 3	For stating circle For stating correct centre and radius				
2 <i>EITHER</i> : (r =) $[3 + t, 1 + 4t, -2 + 2t]$ 8(3+t) - 7(1+4t) + 10(-2+2t) = 7 $\Rightarrow (0t) + (-3) = 7 \Rightarrow \text{ contradiction}$ <i>l</i> is parallel to Π , no intersection <i>OR</i> : $[1, 4, 2] \cdot [8, -7, 10] = 0$ $\Rightarrow l$ is parallel to Π $(3, 1, -2)$ into Π $\Rightarrow 24 - 7 - 20 \neq 7$ <i>l</i> is parallel to Π , no intersection <i>OR</i> : Solve $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{2}$ and $8x - 7y + 10z = 7$ eg $y - 2z = 3$, $2y - 2 = 4z + 8$ eg $4z + 4 = 4z + 8$ <i>l</i> is parallel to Π , no intersection	M1 M1 A1 A1 B1 5 M1 A1 M1 A1 B1 M1 A1 M1 A1 B1 S	For parametric form of <i>l</i> seen or implied For substituting into plane equation For obtaining a contradiction For conclusion from correct working For finding scalar product of direction vectors For correct conclusion For substituting point into plane equation For obtaining a contradiction For conclusion from correct working For eliminating one variable For eliminating another variable For obtaining a contradiction For conclusion from correct working				
3 Aux. equation $m^2 - 6m + 8 (= 0)$ m = 2, 4 CF $(y =) Ae^{2x} + Be^{4x}$ PI $(y =) Ce^{3x}$ $9C - 18C + 8C = 1 \Longrightarrow C = -1$ GS $y = Ae^{2x} + Be^{4x} - e^{3x}$	M1 $A1$ $A1$ $M1$ $A1$ $B1 6$ 6	For auxiliary equation seen For correct roots For correct CF. f.t. from their m For stating and substituting PI of correct form For correct value of C For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI				

4727 Mar	k Sche) 9	e June 20. The statistic of the statisti
4 (i) $q(st) = qp = s$	B1		For obtaining <i>s</i>
(qs)t = tt = s	B1	2	For obtaining <i>s</i>
(ii) METHOD 1			
Closed: see table Identity = r	B1 B1		For stating closure with reason For stating identity <i>r</i>
Inverses: $p^{-1} = s$, $q^{-1} = t$, $(r^{-1} = r)$,	M1		For checking for inverses
$s^{-1} = p, \ t^{-1} = q$	A1	4	For stating inverses OR For giving sufficient explanation to justify each element has an inverse eg r occurs once in each row and/or column
METHOD 2			
Identity $= r$	B1		For stating identity <i>r</i>
	M1		For attempting to establish a generator $\neq r$
eg $p^2 = t$, $p^3 = q$, $p^4 = s$	A1		For showing powers of p (<i>OR</i> q , s or t) are different elements of the set
$\Rightarrow p^5 = r$, so p is a generator	A1		For concluding $p^5(OR q^5, s^5 \text{ or } t^5) = r$
(iii) e, d, d^2, d^3, d^4	B2 8	2	For stating all elements AEF eg d^{-1} , d^{-2} , dd
$\mathbf{r} (\mathbf{r}) (\mathbf{r}) = (\mathbf{r})^{6}$	M1		For expanding (real part of) $(c+is)^6$
5 (i) $(\cos 6\theta =) \operatorname{Re}(c+is)^6$			at least 4 terms and 1 evaluated binomial coefficient needed
$(\cos 6\theta =) c^6 - 15c^4s^2 + 15c^2s^4 - s^6$	A1		For correct expansion
$(\cos 6\theta =)$ $c^{6} - 15c^{4}(1 - c^{2}) + 15c^{2}(1 - c^{2})^{2} - (1 - c^{2})^{3}$	M1		For using $s^2 = 1 - c^2$
$(\cos 6\theta =) 32c^6 - 48c^4 + 18c^2 - 1$	A1	4	For correct result AG
(ii) $64x^6 - 96x^4 + 36x^2 - 3 = 0 \Rightarrow \cos 6\theta = \frac{1}{2}$	M1		For obtaining a numerical value of cos 60
$\Rightarrow (\theta =) \frac{1}{18}\pi, \frac{5}{18}\pi, \frac{7}{18}\pi \text{ etc.}$	A1		For any correct solution of $\cos 6\theta = \frac{1}{2}$
$\cos 6\theta = \frac{1}{2}$ has multiple roots	M1		For stating or implying at least 2 values of θ
largest x requires smallest θ	A1	4	For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root
\Rightarrow largest positive root is $\cos \frac{1}{18}\pi$			from a list of 3 positive roots OR from general solution OR from consideration of the cosine function
	8		

		me June 20. The set of the set o
4727 M	/lark Scher	me June 20. Tarris
		TOUD
6 (i) $n = l_1 \times l_2$	B1	For stating or implying in (i) or (ii) that n is
$\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$	M1*	perpendicular to l_1 and l_2 For finding vector product of direction vectors
$\mathbf{n} = k[-1, 0, 2]$	A1	For correct vector (any k)
$[3, 4, -1] \cdot k[-1, 0, 2] = -5k$	M1 (*dep)	For substituting a point of l_1 into r.n
$\mathbf{r} \cdot [-1, 0, 2] = -5$	A1 5	
(ii) $[5, 1, 1] \cdot k[-1, 0, 2] = -3k$ r · $[-1, 0, 2] = -3$	M1 A1√ 2	For using same n and substituting a point of l_2 For obtaining correct <i>p</i> . AEF in this form f.t. on incorrect n
(iii) $d = \frac{ -5+3 }{\sqrt{5}} OR d = \frac{ [2, -3, 2] \cdot [-1, 0, 2] }{\sqrt{5}}$	M1	For using a distance formula from their equations Allow omission of
<i>OR d</i> from (5, 1, 1) to $\Pi_1 = \frac{ 5(-1) + 1(0) + 1(2) + 5 }{\sqrt{5}}$ <i>OR d</i> from (3, 4, -1) to $\Pi_2 = \frac{ 3(-1) + 4(0) - 1(2) + 3 }{\sqrt{5}}$		
$OR [3-t, 4, -1+2t] \cdot [-1, 0, 2] = -3 \implies t = \frac{2}{5}$ $OR [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \implies t = -\frac{2}{5}$		<i>OR</i> For finding intersection of \mathbf{n}_1 and Π_2 or \mathbf{n}_2 and Π_1
$d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$	A1√ 2	2 For correct distance AEF f.t. on incorrect n
(iv) d is the shortest OR perpendicular distance between l_1 and l_2	B1 1	I For correct statement
	10	
7 (i) $(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2)z \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$	B1 1	For correct justification AG
$\equiv z^2 - (2\cos\phi)z + 1$		
(ii) $z = e^{\frac{2}{7}k\pi i}$	B1	For general form OR any one non-real root
for $k = 0, 1, 2, 3, 4, 5, 6 OR 0, \pm 1, \pm 2, \pm 3$	B1	For other roots specified $(1-0) = e^{2\pi i}$
†im •		(<i>k</i> =0 may be seen in any form, eg 1, e^0 , $e^{2\pi i}$) For answers in form $\cos \theta + i \sin \theta$ allow maximum B1 B0
	B1	For any 7 points equally spaced round unit circle (circumference need not be shown)
	B1 4	For 1 point on + ^{ve} real axis, and other points in correct quadrants
$(\mathbf{iii}) \left(z^{7} - 1 = \right) (z - 1)(z - e^{\frac{2}{7}\pi \mathbf{i}})(z - e^{\frac{4}{7}\pi \mathbf{i}})$ $(z - e^{\frac{6}{7}\pi \mathbf{i}})(z - e^{\frac{-2}{7}\pi \mathbf{i}})(z - e^{\frac{-4}{7}\pi \mathbf{i}})(z - e^{\frac{-6}{7}\pi \mathbf{i}})$	M1	For using linear factors from (ii), seen or implied
$=(z-e^{\frac{2}{7}\pi i})(z-e^{\frac{-2}{7}\pi i})\times(z-e^{\frac{4}{7}\pi i})(z-e^{\frac{-4}{7}\pi i})$ $(z-e^{\frac{6}{7}\pi i})(z-e^{\frac{-6}{7}\pi i})\times$	M1	For identifying at least one pair of complex conjugate factors
$\times (z-1)$	B1	For linear factor seen
$=(z^2-(2\cos{\frac{2}{7}}\pi)z+1)\times$	A1	For any one quadratic factor seen
$(z^2 - (2\cos\frac{4}{7}\pi)z + 1) \times (z^2 - (2\cos\frac{6}{7}\pi)z + 1) \times (z - 1)$	A1 5	5 For the other 2 quadratic factors and expression written as product of 4 factors
x (2 - 1)	10	

4727 Mai	rk Schem	e June 20 June 20 For correct IF For integrating to ln form	
8 (i) Integrating factor $e^{\int \tan x (dx)}$	B1	For correct IF	~UQ.
$=e^{-\ln\cos x}$	M1	For integrating to ln form	
$=(\cos x)^{-1} OR \sec x$	A1	For correct simplified IF AEF	
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y(\cos x)^{-1} \right) = \cos^2 x$	В1√	For $\frac{d}{dx}(y.\text{their IF}) = \cos^3 x$. their IF	
$y(\cos x)^{-1} = \int \frac{1}{2} (1 + \cos 2x) (dx)$	M1 M1	For integrating LHS For attempting to use $\cos 2x$ formula <i>OR</i> parts for $\int \cos^2 x dx$	
$y(\cos x)^{-1} = \frac{1}{2}x + \frac{1}{4}\sin 2x (+c)$	A1	For correct integration both sides AEF	
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x + c\right)\cos x$	A1 8	For correct general solution AEF	
(ii) $2 = \left(\frac{1}{2}\pi + c\right) \cdot -1 \Longrightarrow c = -2 - \frac{1}{2}\pi$	M1	For substituting $(\pi, 2)$ into their GS and solve for <i>c</i>	
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x - 2 - \frac{1}{2}\pi\right)\cos x$	A1 2	For correct solution AEF	
9 (i) $3^n \times 3^m = 3^{n+m}$, $n+m \in \mathbb{Z}$	B1	For showing closure	
$(3^p \times 3^q) \times 3^r = (3^{p+q}) \times 3^r = 3^{p+q+r}$	M1	For considering 3 distinct elements, seen bracketed 2+1 or 1+2	
$= 3^{p} \times (3^{q+r}) = 3^{p} \times (3^{q} \times 3^{r}) \Longrightarrow \text{ associativity}$	A1	For correct justification of associativity	
Identity is 3 ⁰	B1	For stating identity. Allow 1	
Inverse is 3^{-n}	B1	For stating inverse	
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Rightarrow$ commutativity	B1 6	For showing commutativity	
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} \left(= 3^{2(n+m)}\right)$	B1*	For showing closure	
Identity, inverse OK	B1 (*dep) 2	For stating other two properties satisfied and hence a subgroup	
(b) For 3^{-n} ,	M1	For considering inverse	
<i>−n</i> ∉ subset	A1 2	For justification of not being a subgroup	
		3^{-n} must be seen here or in (i)	
(c) <i>EITHER</i> : eg $3^{1^2} \times 3^{2^2} = 3^5$	M1	For attempting to find a specific counter-example of closure	
$\neq 3^{r^2} \Rightarrow$ not a subgroup	A1 2	For a correct counter-example and statement that it is not a subgroup	
$OR: \ 3^{n^2} \times \ 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general	
$\neq 3^{r^2}$ eg $1^2 + 2^2 = 5 \implies$ not a subgroup	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and statement that it is not a subgroup	
	12		

			m.n. M
4728		Mark S	Scheme June 20. Mainstraction of a second participation of the second participation of
1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
1(1)	Y = 12	B1	No evidence for which value is X or Y available from (ii) award B1 for the pair of values 5 and 12 irrespective of
		[2]	order
(ii)	$R^2 = 5^2 + 12^2$	M1	For using $R^2 = X^2 + Y^2$
	Magnitude is 13 N	A1	Allow 13 from X=-5
	$\tan\theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A1	SR: p=14.9 and Q=11.4 giving R=13+/-0.1 B2,
		[4]	Angle = 67.5+/-0.5 B2
2(i)	250 + 1/2 (290 - 250)	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
	t = 270	A1	
		[2]	
(ii)		M1	The idea that area represents displacement
	$\frac{1}{2} x40x12+210x12+\frac{1}{2}x20x12-$	M1	Correct <u>structure</u> , ie triangle1 + rectangle2 + triangle3 -
	$\frac{1}{2} \times 20 \times 12$ or $\frac{1}{2} \times 40 \times 12 + 210 \times 12$		triangle4 with triangle3 = triangle4 , triangle1 +
	or $\frac{1}{2}$ x(210+250)x12etc	4.1	rectangle2, trapezium1&2, etc
	Displacement is 2760m	A1	
(iii)	appropriate <u>structure</u> , ie triangle +	[3] M1	All terms positive
(111)	rectangle + triangle + triangle ,	111	An terms positive
	triangle + rectangle + 2triangle, etc Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
3(i)		M1	An equation with R, T and 50 in linear combination.
	$R + Tsin72^{\circ} = 50g$	A1	R + 0.951T = 50g
		[2]	
(ii)	$T = 50g/sin72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^\circ = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg m = 52.6	B1	A
	m = 52.6	B1 [4]	Accept 52.5
(iii)	$X = T\cos 72^{\circ}$	B1	Implied by correct
()	11 1000/2	21	answer
	X = 159	B1	Or better
		[2]	
4(*)		3.64	
4(i)	In Q4 right to left may be used as the positive sense throughout	M1	For using Momentum 'before' is zero
	positive sense throughout. $0.18 \ge 2 - 3m = 0$	A1	
	$0.18 \times 2 - 3m = 0$ m = 0.12	A1 A1	
	111 - 0.12	[3]	3 marks possible if g included consistently
(iia)	Momentum after	B1	5 marks possible in g included consistently
(114)	= -0.18 x 1.5 + 1.5 m		
	$0.18 \ge 2 - 3m = -0.18 \ge 1.5 + 1.5m$	M1	For using conservation of momentum
	m = 0.14	A1	2 maybe magnifuls if a included as a state that
(;;1)	0.19 x 2 2 2 2 2	[3]	3 marks possible if g included consistently
(iib)	0.18 x 2 - 3m = (0.18 + m)1.5	B1ft	ft wrong momentum 'before'
	m = 0.02	B1	
	$0.18 \ge 2 - 3m = -(0.18 + m)1.5$	B1ft	
	m = 0.42	B1	
		[4]	0 marks if g included

			my
4728		Mark	Scheme June 20. Scheme June 20. Using $v^2 = u^2 + -2gs$ with $v = 0$ or $u = 0$
4120			Scheme Sure 200 Visch.
5(i)		M1	Using $v^2 = u^2 + 2gs$ with $v = 0$ or $u = 0$
- ()	$8.4^2 - 2gs_{max} = 0$	A1	
	Height is 3.6m (AG)	A1	
		[3]	
(ii)		M1	Using $u^2 = +/-2g(ans(i)-2)$
	u = 5.6	A1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{+}{-g}$, expressions for s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2}gt^2$ and		Or 8.4t $(-\frac{1}{2} \text{ gt}^2) = 5.6t (-\frac{1}{2} \text{ gt}^2) + -2$
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A1	Correct sign for g, $cv(5.6)$, $+/-2$ in only one equation
	t = 5/7 (0.714)	A1 M1	Cao Using $y = y$ bet for D and for O $z = 1/z$ sy(t)
	x = 94.0714 and $z = 56.0714$	M1	Using $v = u$ +at for P and for Q, $a = +/-g$, $cv(t)$
	$v_{\rm P} = 8.4 - 0.714$ g and $v_{\rm Q} = 5.6 - 0.714$ g	A1	Correct sign for g, cv(5.6), candidates answer for t (including sign)
	$v_P = 1.4$ and $v_Q = -1.4$	A1	cao
	OR (time when at some speed in	[6]	
	OR (time when at same speed in opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 -gt and $-v = 5.6$ -gt	A1	Correct sign for g, $cv(5.6)$
	v = 8.4 -gt and $-v = 5.0$ -gt $v = 1.4$ {or t = 5/7 (0.714)}	A1 A1	Only one correct answer is needed
	$v = 1.4 \{01 \ t = 3/7 \ (0.714)\}$	AI	Only one confect answer is needed
	(with $v = 1.4$) $1.4^2 = 8.4^2 - 2g_{s_P}$ and	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(v)$
	$(-1.4)^2 = 5.6^2 - 2gs_Q$	A1	Correct sign for g, cv(5.6), candidate's answer for v (including - for Q)
	$s_{\rm P} = 3.5$ and $s_{\rm Q} = 1.5$	A1	cao
	$\{(\text{with } t=5/7)\}$		
		M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{+}{-g}$, $cv(t)$
	$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and		
	$s = 5.6x0.714 - \frac{1}{2} gx0.714^2$	A1	Correct sign for g, $cv(5.6)$, candidate's answer for t (including sign of t if negative)
	$s_P = 3.5$ and $s_Q = 1.5$	A1	cao}
	OR (motion related to greatest height		
	and verification)	M1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 -gt and $0 = 5.6$ -gt		-
	t = 6/7 and $t = 4/7$	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
	$\{0 = v_P - g/7 \text{ and } v_Q = 0 + g/7\}$		{Or semi-interval = $\frac{6}{7-4}$ }
	$v_P = 1.4$ and $v_Q = -1.4$	A1	cao
	$s_P = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and $s_Q = 5.6x0.714 - \frac{1}{2} gx0.714^2$	M1	s = ut + $\frac{1}{2}$ at ² for P <i>and</i> for Q, correct sign for g, cv(5.6) and cv(t)
	{ $s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2$ and		${s = vt - \frac{1}{2} at^2 \text{ for P } and s = ut + \frac{1}{2} at^2 \text{ for } Q}$
	$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$	A1	
	$s_{\rm P} = 3.5 \ s_{\rm Q} = 1.5$		
	$\{ s_P = 0.1 \ s_Q = 0.1 \}$	A1	cao
			continued

			m
4728		Marł	k Scheme June 20. Using $v^2 = u^2 + 2as$ for P <i>and</i> for Q, $a = +/-g$, $cv(5.6)$, different expressions for s
5(iii)	OR (without finding exactly where or		
Junj	when)	M1	Using $v^2 = u^2 + 2as$ for P <i>and</i> for Q, $a = +/-g$, $cv(5.6)$,
cont	$v_P^2 = 8.4^2 - 2g(s + / -2)$ and		different expressions for s. Correct sign for g, $cv(5.6)$, $(s+/-2)$ used only once cao. Verbal explanation essential
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$ $v_P^2 = v_Q^2$ for all values of s so that	A1	Using $v = u+at$ t for P <i>and</i> for Q, $a = +/-g$ Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the same heights.	A1 M1	cv(5.6)
	0 = 8.4 -gt and $0 = 5.6$ -gt	A1	
	t $_{\rm P} = 6/7$ and t $_{\rm Q} = 4/7$ means there is a time interval when Q has started to descend but P is still rising, and there will be a position where they have the		cao. Verbal explanation essential
	same height but are moving in opposite directions.	A1	
6(i)	$v = 0.004t^3 - 0.12t^2 + 1.2t$	M1 A1	For differentiating s Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4ms^{-1}$ (AG)	A1 [3]	Correct formula for v (no +c) and t=10 stated sufficient
(ii)	$\alpha \alpha = \alpha \alpha t^2 (t, \alpha)$	M1	For integrating a
	$v = 0.8t - 0.04t^{2} (+ C)$ 8 - 4 + C = 4 $v = 0.8x20 - 0.04x20^{2} (+ C)$	A1 M1* M1	Only for using $v(10) = 4$ to find C
	v(20) = 16 - 16 = 0 (AG)	DA1 [5]	Dependant on M1*
(iii)	$S = 0.4t^2 - 0.04t^3/3 (+K)$	M1 A1	For integrating v Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
	s(10) = 10 - 40 + 60 = 30	B1 M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \rightarrow K = 10/3$	Al	Not if S includes ct term
	S(20) = 160 - 320/3 + 10/3 = 56.7m OR	B1 [6]	Accept 56.6 to 56.7, Adding 30 subsequently is not isw, hence B0
	s(10) = 10 - 40 + 60 = 30	B1 M1	
	$S = 0.4t^2 - 0.04t^3/3$	A1	For integrating v Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
	S(20) - S(10) = 26.6, 26.7	M1 A1	Using limits of 10 and 20 (limits 0, 10 M0A0B0) For 53.3 - 26.7 or better (Note $S(10) = 26.7$ is
	displacement is 56.7m	B1	fortuitously correct M0A0B0) Accept 56.6 to 56.7

			mm
4728		Ν	Mark Scheme June 20 For using $F = \mu R$
7(i)	$R = 1.5gcos21^{\circ}$	B1	
		M1	For using $F = \mu R$
	Frictional force is 10.98N (AG)	A1 [3]	Note 1.2gcos21=10.98 fortuitously, B0M0A0
(ii)		M1	For obtaining an N2L equation relating to the block in which T, m and a are in linear combination or For obtaining an N2L equation relating to the object in which T, m and a are in linear combination
	$T + 1.5gsin21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerica value for a letter (excluding g), excess terms. Minimise error count.
(iii)	T - 1.5a = 5.71 and $1.2a + T = 11.76$	M1	For solving the simultaneous equations in T and a for a.
	a = 2.24 (AG)	A1 [2]	Evidence of solving needed
(iva)	$v^2 = 2 \ge 2.24 \ge 2.24 \ge 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1 [2]	Accept 3
(ivb)		M1	For using $T = 0$ to find a
	a = -3.81	A1	
	$v^2 = 2.99^2 + 2 x (-3.81) x 0.8$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any value for a
	Speed of the block is 1.69ms ⁻¹	A1 [4]	Accept art 1.7 from correct work

4729		Mark Schen	ne	hun nyma	My Naus
1	40 cos35°	B1			Y.COM
	$WD = 40\cos 35^{\circ} \times 100$	M1			
	3280 J	A1 3	ignore units	3]
2	$0 = 12\sin 27^\circ t - 4.9t^2$ any correct.	M1	or $R = u^2 \sin 2\theta/g$ (B2)		
	t = 1.11method for total time	A1	correct formula only		
	$R = 12\cos 27^{\circ} x t$	M1	$12^2 \text{ x sin54}^\circ / 9.8 \text{ sub in values}$		
	11.9	A1 4	11.9	4]
3 (i)	$WD = \frac{1}{2}x250x150^2 - \frac{1}{2}x250x100^2$	M1]
	1 560 000	<u>A1</u>	1 562 500		-
	450 000 = 1 560 000/t	<u>M1</u>			
	3.47	A1 4			-
(ii)	$F = 450\ 000/120$	<u>M1</u>			
	3750	A1			-
	3750 = 250a 15 ms ²	M1 A1 4		8	-
	10 115			0	
4 (i)	x = 7t	B1			
	$y = 21t - 4.9t^2$	M1	or – g/2		
		A1	-		
	$y = 21.x/7 - 4.9 x^2/49$	M1			
	$y = 3x - x^2 / 10$	A1 5	AG		
(ii)	$-25 = 3x - x^2 / 10 \pmod{25}$	M1	or method for total time (5.26)		
	solving quadratic	M1	or 7 x total time		
	36.8 m	A1 3		8]
5(i)	¹ / ₂ . 70 .4 ²	M1			
	560 J	A1 2			1
(ii)	70 x 9.8 x 6	M1			
	4120	A1 2	4116]
(iii)	60d	B1			
	8000 = 560 + 4120 + 60d	M1	4 terms		
		A1	I their KE and PE		
	55.4 m	A1 4		8	

4729		Mark Schem	ne June 20. June 20. The s. vertically (3 parts with comps)	OFOUS SURVEY
6 (i)	$5\cos 30^{\circ} = 0.3x9.8 + S\cos 60^{\circ}$	M1	res. vertically (3 parts with comps)	*.CO
		A1		
	2.78 N	A1 3		
(ii)	$r = 0.4 \sin 30^\circ = 0.2$	B1	may be on diagram	
	$5\sin 30^{\circ} + S\sin 60^{\circ} = 0.3 \times 0.2 \times \omega^2$	M1	res. horizontally (3 parts with comps)	
	9.04 rads ⁻¹	A1 3		
(iii)	$v = 0.2 \times 9.04$	M1	or previous v via mv ² /r	
	$KE = \frac{1}{2} \times 0.3 \times (0.2 \times 9.04)^2$	M1		
	0.491 J or 0.49	A1 3	$1 \text{ their } \omega^2 \ge 0.006$ 9	

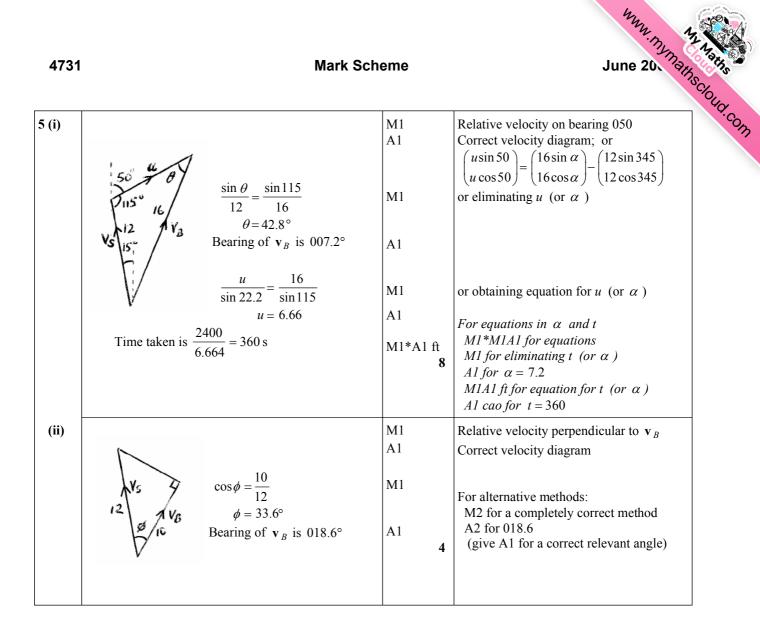
7 (i)	1.8 = -0.3 + 3m	M1	
	m = 0.7	A1 2	AG
(ii)	e = 4/6	M1	accept 2/6 for M1
	2/3	A1 2	accept 0.67
(iii)	$\pm 3f$	B1	
	1/3 [⊲] f ([⊗] 1)	B1 2	
(iv)	I = 3f x 0.73 x 0.7	M1	ok for only one minus sign for M1
		A1	
	I = 2.1 (f + 1)	A1 3	aef 2 marks only for $-2.1(f+1)$
(v)	0.3 + 6.3/4 = 0.3a + 0.7b	M1	$\operatorname{can} \operatorname{be} - 0.7b$
	3a + 7b = 18.75	A1 *	aef
	2/3 = (a - b)/5/4	M1	allow $e=3/4$ or their e for M1
	3a - 3b = 5/2	A1 *	aef * means dependent.
	solve	M1	
	a = 2.5	A1	(2.46) allow \pm (59/24)
	<i>b</i> = 1.6	A1 7	(1.625) allow \pm $(13/8)$ 16

8 (i)	com of hemisphere 0.3 from O	B1	or 0.5 from base
	com of cylinder $h/2$ from O	B1	
	$0.6x45 = 40x0.5 + (0.8 + h/2) \times 5$ or	M1	or $40x0.3 - 5xh/2 = 45 \times 0.2$
	45(h+0.2) = 5h/2 + 40(h+0.3)	A1	or $5(0.2 + h/2) = 40x0.1$
	$27 = 20 + (0.8 + h/2) \ge 5$	M1	solving
	h = 1.2	A1 6	AG
(ii)	1.2 T	B1	
	0.8 F	B1	
	0.8F = 1.2T	M1	
	F = 3T/2	A1 4	aef
(iii)	$F + T\cos 30^{\circ}$	B1	or 45 x 0.8 sin30°
	45sin30° must be involved in res.	B1	$T \ge (1.2 + 0.8\cos 30^{\circ})$
	resolving parallel to the slope	M1	mom. about point of contact
	$F + T\cos 30^\circ = 45\sin 30^\circ$ aef	A1	45.0.8sin30°=T(1.2+0.8cos30°)
	T = 9.51	A1	
	F = 14.3	A1 6	16
or	$T + F\cos 30^\circ = R\sin 30^\circ$	B1	res. horizontally
(iii)	$R\cos 30^\circ + F\sin 30^\circ = 45$	B1	res. vertically
	tan30°=(T+Fcos30°)/(45-Fsin30°)	M1	eliminating R

(i) $[\omega = 2\pi/6.1 = 1.03]$ M1For using $T = 2\pi/\omega$ M1Speed is 3.09ms^{-1} A13(ii)M1For using $v_{max} = a\omega$ (iii)M1For using $v^2 = \omega^2(A^2 - x^2)$ or for using $v = A\omega \cos \omega t$ at $= A\sin \omega t$ $2.5^2 = 1.03^2(3^2 - x^2)$ A1ftor $x = 3\sin(1.03x0.60996)$ A1Distance is $1.76m$ A1M1For triangle with magnitudes shownFor magnitudes of 2 sides correctly marked For magnitudes of all 3 sides correctly marked M1A1M1For attempting to find angle (nymath
Speed is 3.09ms^{-1} A13(ii)M1For using $v^2 = \omega^2 (A^2 - x^2)$ or for using $v = A\omega \cos \omega$ t at $= A \sin \omega t$ $2.5^2 = 1.03^2 (3^2 - x^2)$ or $x = 3 \sin(1.03 x 0.60996)$ Distance is 1.76m A1 ftImage: Magnitudes 0.6, 0.057 x 7, 0.057 x 10]M1For triangle with magnitudes shownFor magnitudes of 2 sides correctly marked For magnitudes of all 3 sides correctly marked A1A1	
(ii)M1For using $v^2 = \omega^2 (A^2 - x^2)$ or for using $v = A\omega \cos \omega$ t at $= A \sin \omega t$ $2.5^2 = 1.03^2 (3^2 - x^2)$ or $x = 3 \sin(1.03 x 0.60996)$ Distance is $1.76m$ A1 ftft incorrect ω [Magnitudes 0.6, 0.057 x 7, 0.057 x 10]M1For triangle with magnitudes shownFor magnitudes of 2 sides correctly marked For magnitudes of all 3 sides correctly marked A1A1	
$2.5^{2} = 1.03^{2}(3^{2} - x^{2})$ or x = 3sin(1.03x0.60996) Distance is 1.76m A1 3 [Magnitudes 0.6, 0.057 x 7, 0.057 x 10] M1 For triangle with magnitudes shown For magnitudes of 2 sides correctly marked For magnitudes of all 3 sides correctly marked A1 For magnitudes of all 3 sides correctly marked A1	nd x
Distance is 1.76m A1 3 [Magnitudes 0.6, 0.057 x 7, 0.057 x 10] M1 For triangle with magnitudes shown For magnitudes of 2 sides correctly marked A1 For magnitudes of all 3 sides correctly marked A1	
For magnitudes of 2 sides correctly markedA1For magnitudes of all 3 sides correctly markedA1	
For magnitudes of 2 sides correctly markedA1For magnitudes of all 3 sides correctly markedA1	
For magnitudes of all 3 sides correctly marked A1	
opposite to the side of magnit 0.057 x 7	· · ·
M1 For correct use of the cosine r or equivalent	rule
$0.399^2 = 0.57^2 + 0.6^2 - 2 \ge 0.57 \ge 0.6 \cos \alpha \qquad \text{A1ft}$	
Angle is 140° A1 7 $(180 - 39.8)^{\circ}$	
ALTERNATIVE METHOD	
$M1 \qquad For using I = \Delta mv \text{ parallel to}$ $initial direction of motion$ or parallel to the impulse	the
$-0.6\cos\alpha = 0.057 \text{ x } 7\cos\beta - 0.057 \text{ x } 10 \qquad \text{A1}$ or $0.6 = 0.057 \text{ x} 10\cos\alpha + 0.057 \text{ x} 7\cos\gamma$	
M1 For using $I = \Delta mv$ perpendicute to the initial direction of motion of	ion
or perpendicular to the impuls $0.6\sin \alpha = 0.057 \text{ x } 7\sin \beta$ A1 or $0.057 \text{ x } 10\sin \alpha = 0.057 \text{ x } 7\sin \gamma$	se
M1 For eliminating β *or γ	
$0.399^{2} = (0.57 - 0.6\cos\alpha)^{2} + (0.6\sin\alpha)^{2} $ A1ft or $0.399^{2} = (0.6 - 0.57\cos\alpha)^{2} + (0.057\sin\alpha)^{2}$	
Angle is 140° A1 7 $(180 - 39.8)^{\circ}$	

				hung
4730	Mark Sche	mo		June 20
4750				Julie 201 y
3	(i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law with $a = v dv/dx$
	(1/v) dv/dx = -2	A1	2	AG
	(ii) $\left[\int (1/v)dv = \int -2dx\right]$	M1		For separating variables and attempting to integrate
	$\ln v = -2x (+C)$	A1		
	$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
	$v = ue^{-2x}$	A1	4	
	(iii) $\left[\int e^{2x} dx = \int u dt\right]$	M1		For using $v = dx/dt$ and separating variables
	$e^{2x}/2 = ut$ (+C)	A1		
	$[e^{2x}/2 = ut + \frac{1}{2}]$	M1	4	For using $x(0) = 0$
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
	ALTERNATIVE METHOD FOR PART (iii)			
		M1		For using $a = dv/dt$, separating
	$\left[\int \frac{1}{v^2} dv = -2\int dt \rightarrow -1/v = -2t + A$, and			variables, attempting to integrate
	$\mathbf{A} = -1/\mathbf{u}$			and using $v(0) = u$
	-	M1		For substituting $v = ue^{-2x}$
	$-e^{2x}/u = -2t - 1/u$	A1		
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
4	$y=15\sin\alpha$ (=12)	B1		
4	$\begin{bmatrix} 4(15\cos\alpha) - 3 \times 12 = 4a + 3b \end{bmatrix}$	M1		For using principle of
	[+(150502) 5 x 12 10 50]	1411		conservation of momentum in the
				direction of l.o.c.
	Equation complete with not more than one error	A1		
	4a + 3b = 0	A1		
		M1		For using NEL in the direction of
				l.o.c.
	$0.5(15\cos\alpha + 12) = b - a$	A1		
	[a = -4.5, b = 6]	M1		For solving for a and b
	[Speed = $\sqrt{(-4.5)^2 + 12^2}$,	M1		For correct method for speed or direction of A
	Direction $\tan^{-1}(12/(-4.50))$			direction of A
	Speed of A is 12.8ms ⁻¹ and direction is 111°	A1		Direction may be stated in any
	anticlockwise from 'i' direction			form , including $\theta = 69^{\circ}$ with
				θ clearly and appropriately
				indicated
	Speed of B is $6ms^{-1}$ to the right			

			mm
4730 Mark Sch	eme		Www.myms June 20. For taking moments of forces on BC about B
5 (i)	M1		For taking moments of forces on BC about B
$80 \times 0.7 \cos 60^{\circ} = 1.4 \text{T}$	A1		
Tension is 20N $[X = 20\cos 30^{\circ}]$	A1 M1		For resolving forces horizontally $ft X = T\cos 30^{\circ}$
Horizontal component is $17.3N$ [Y = $80 - 20\sin 30^{\circ}$] Vertical component is $70N$	A1ft M1 A1ft	7	For resolving forces vertically
(ii)	M1	/	For taking moments of forces on AB, or on ABC, about A
$17.3 \times 1.4 \sin \alpha = (80 \times 0.7 + 70 \times 1.4) \cos \alpha \text{ or} \\ 80 \times 0.7 \cos \alpha + 80 (1.4 \cos \alpha + 0.7 \cos 60^{\circ}) = \\ 20 \cos 60^{\circ} (1.4 \cos \alpha + 1.4 \cos 60^{\circ}) + \\ 20 \sin 60^{\circ} (1.4 \sin \alpha + 14 \sin 60^{\circ})$	A1ft		,
$[\tan \alpha = (\frac{1}{2} 80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1		For obtaining a numerical expression for $\tan \alpha$
$\alpha = 81.1^{\circ}$	A1	4	
ALTERNATIVE METHOD FOR PART (i)			
	M1		For taking moments of forces on BC about B
$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A1		Where H and V are components of T
	M1		For using $H = V\sqrt{3}$ and solving simultaneous equations
Tension is 20N	A1		
Horizontal component is 17.3N	B1ft		ft value of H used to find T
[Y = 80 - V]	M1	7	For resolving forces vertically
Vertical component is 70N	A1ft	/	ft value of V used to find T


Mark Scheme			For using $T = \lambda x/L$ AG From 5.25 + 2
(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
$2058x/5.25 = 80 \times 9.8 \qquad (x = 2)$	A1		
OP = 7.25m	A1	3	AG From 5.25 + 2
(ii) Initial PE = $(80 + 80)g(5)$ (= 7840)	B1		
or $(80 + 80)$ gX used in energy equation	D 1		
Initial KE = $\frac{1}{2}(80 + 80)3.5^2$ (= 980) [Initial EE = $\frac{2058x2^2}{(2x5.25)}$ (= 784),	B1 M1		Example $EE = 2\pi^2/2I$
Final $EE = 2058x7^{2}/(2x5.25)$ (= 9604), or	1111		For using $EE = \lambda x^2/2L$
$2058(X+2)^{2}/(2x5.25)$			
[Initial energy = $7840 + 980 + 784$,	M1		For attempting to verify
final energy $= 9604$			compatibility with the
or $1568X + 980 + 784 = 196(X^2 + 4X + 4) \rightarrow$			principle of conservation of
$196X^2 - 784X - 980 = 0]$			energy, or using the principle
	A 1	~	and solving for X
Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just reach the net	A1	5	AG
(iii) [PE gain = $80g(7.25 + 5)$]	M1		For finding PE gain from net
$(\mathbf{n}) [\mathbf{r} \mathbf{r} \mathbf{g} \mathbf{u} \mathbf{n} \mathbf{o} \mathbf{g} (\mathbf{r} \mathbf{z} \mathbf{s} + \mathbf{s})]$			level to O
PE gain = 9604	A1		
PE gain = EE at net level \rightarrow P just reaches O	A1	3	AG
(iv) For any one of 'light rope', 'no air	B1		
resistance', 'no energy lost in rope'	-	-	
For any other of the above	B1	2	
FIRST ALTERNATIVE METHOD FOR			
PART (ii)			
[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second
			law with $a = v dv/dx$,
			separating the variables and
			attempting to integrate
$v^2/2 = gx - 1.225x^2 (+C)$	A1		Any correct form
C = -8.575	M1 A1		For using $v(2) = 3.5$
$[v(7)^2]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P\&Q \text{ just}$	A1 A1	5	AG
reach the net $0.025 \ 0.075 $		5	
SECOND ALTERNATIVE METHOD FOR PART			
(ii) (-2.45(-4))	D1		
	B1		
$\ddot{x} = g - 2.45x$ (= -2.45(x - 4))	M1		For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$
$x = g - 2.45x \qquad (-2.43(x - 4))$			v = n(A - (X - 4))
	Δ1		
$3.5^2 = 2.45(A^2 - (-2)^2)$ (A = 3)	A1 M1		
	A1 M1		For using 'distance travelled
$3.5^2 = 2.45(A^2 - (-2)^2)$ (A = 3)			For using 'distance travelled downwards by P and Q =
$3.5^2 = 2.45(A^2 - (-2)^2)$ (A = 3)			For using 'distance travelled

				For using $a = v^2/r$
730	Mark Scheme			June 20 The
1	(i) $[a = 0.7^2/0.4]$	M1		For using $a = v^2/r$
	For not more than one error in $T - 0.8g\cos 60^\circ = 0.8x0.7^2/0.4$	A1		
	Above equation complete and correct	A1		
	Tension is 4.9N	A1	. 4	
	(ii)	M1		For using the principle of conservation of energy
	$\frac{1}{2} 0.8 v^2 =$	A1		(v = 2.1)
	$\frac{1}{2} 0.8(0.7)^2 + 0.8g0.4 - 0.8g0.4 \cos 60^\circ$			
	(2.1 - 0)/7 = 2u	M1		For using NEL
	Q's initial speed is 0.15ms ⁻¹	A1	4	AG
	(iii)	M1		For using Newton's second law transversely
	(m)0.4 $\ddot{\theta}$ = -(m)g sin θ	A1		*Allow m = 0.8 (or any other numerical value)
	$[0.4 \ddot{\theta} \approx -g\theta]$	M1		For using $\sin\theta \approx \theta$
	$[\frac{1}{2} \text{ m}0.15^2 = \text{mg}0.4(1 - \cos\theta_{\text{max}})$	M1		For using the principle of
	→ $\theta_{\text{max}} = 4.34^{\circ} (0.0758 \text{rad})$]			conservation of energy to find
				$\theta_{\rm max}$
	θ_{max} small justifies 0.4 $\ddot{\theta} \approx -g \theta$, and this implies SHM	A1	5	
	(iv) $[T = 2\pi / \sqrt{24.5} = 1.269]$	M1		For using T = $2 \pi/n$
	$[\sqrt{24.5} t = \pi]$			or
				for solving either $\sin nt = 0$
				(non-zero t) (considering
				displacement) or $\cos nt = -1$
				(considering velocity)
	Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2}T$

				June 20.	122
4731	Mark Sche	me		June 20	aths ch
1 (i)	Using $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$, $56 = 0 + \frac{1}{2} \alpha \times 8^2$	M1			,049.CO
	$\alpha = 1.75 \text{ rad s}^{-2}$	A1	2		m
(ii)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $36^2 = 20^2 + 2 \times 1.75\theta$	M1			1
	$\theta = 256 \text{ rad}$	A1 ft	2	ft is 448 $\div \alpha$	
2	Volume is $\int_{0}^{a} \pi (4a^{2} - x^{2}) dx = \pi \left[4a^{2}x - \frac{1}{3}x^{3} \right]_{0}^{a}$	M1		π may be omitted throughout (Limits not required)	
	$=\frac{11}{3}\pi a^3$	A1	ļ		
	$\int_0^a \pi x (4a^2 - x^2) \mathrm{d}x$	M1			
	$= \pi \left[2a^{2}x^{2} - \frac{1}{4}x^{4} \right]_{0}^{a}$ $= \frac{7}{4}\pi a^{4}$	A1		(Limits not required)	
		A1	ļ		
	$\bar{x} = \frac{\frac{7}{4}\pi a^4}{\frac{11}{3}\pi a^3} = \frac{21}{44}a$	M1		for $\frac{\int x y^2 dx}{\int y^2 dx}$	
	44	A1	7		
3 (i)	$I = 6.2 + 2.8 = 9.0 \text{ kg m}^2$	B1	1		
(ii)	WD against frictional couple is $L \times \frac{1}{2}\pi$	B1			1
	Loss of PE is $6 \times 9.8 \times 1.3$ (= 76.44)	B1	ļ		
	Gain of KE is $\frac{1}{2} \times 9.0 \times 2.4^2$ (= 25.92) By work-energy principle,	B1 ft			
	$L \times \frac{1}{2} \pi = 76.44 - 25.92$ L = 32.2 N m	M1	ļ	Equation involving WD, KE and PE	
		A1	5	Accept 32.1 to 32.2	
(iii)	$6 \times 9.8 \times 0.8 - L = I \alpha$	M1 A1 ft		Moments equation	-
	$\alpha = 1.65 \text{ rad s}^{-2}$	A1	3		

			www.m.	12
4731	Mark Scher	ne	June 20.	the set of
4 (i)	MI of elemental disc about a diameter is $\frac{1}{4} \left(\frac{M}{3a} \delta x \right) a^{2}$ MI of elemental disc about <i>AB</i> is $\frac{1}{4} \left(\frac{M}{3a} \delta x \right) a^{2} + \left(\frac{M}{3a} \delta x \right) x^{2}$ $I = \frac{M}{3a} \int_{0}^{3a} \left(\frac{1}{4} a^{2} + x^{2} \right) dx$ $= \frac{M}{3a} \left[\frac{1}{4} a^{2} x + \frac{1}{3} x^{3} \right]_{0}^{3a}$	B1 M1 A1 M1 A1	$\frac{M}{3a} \text{ may be } \rho \pi a^2 \text{ throughout}$ $\frac{M}{3a} \text{ may be } \rho \pi a^2 \text{ throughout}$ $(condone \text{ use of } \rho = 1)$ Using parallel axes rule $(can award A1 \text{ for } \frac{1}{4}ma^2 + mx^2)$ Integrating MI of disc <i>about AB</i> Correct integral expression for <i>I</i>	1044.Com
	$3a^{1} 4^{3} 3^{3} 4^{0}$ $= \frac{M}{3a} (\frac{3}{4}a^{3} + 9a^{3})$ $= M(\frac{1}{4}a^{2} + 3a^{2})$ $= \frac{13}{4}Ma^{2}$	M1 A1 (ag) 7	Obtaining an expression for <i>I</i> in terms of <i>M</i> and <i>a Dependent on previous M1</i>	
(ii)	Period is $2\pi \sqrt{\frac{I}{Mgh}}$	M1	or $-Mgh\sin\theta = I\ddot{\theta}$	
	$= 2\pi \sqrt{\frac{\frac{13}{4}Ma^2}{Mg\frac{3}{2}a}}$ $= 2\pi \sqrt{\frac{13a}{6g}}$	A1		
	$=2\pi\sqrt{\frac{13a}{6g}}$	A1 3		

4731	Mark S	Schei	me		Www.mym June 20. Using parallel axes rule	N. Al
					TT · Ust succession	
6 (i)	$I = \frac{1}{3}ma^{2} + m(\frac{1}{3}a)^{2}$		M1	ļ	Using parallel axes rule	
	$=\frac{4}{9}ma^2$		A1	ļ		
	$mg(\frac{1}{3}a\cos\theta) = I \alpha$		M1	ļ		
	$\alpha = \frac{\frac{1}{3}mga\cos\theta}{\frac{4}{9}ma^2} = \frac{3g\cos\theta}{4a}$		A1 (ag)	4		
(ii)	By conservation of energy,		M1			
	$\frac{1}{2}I\omega^2 = mg(\frac{1}{3}a\sin\theta)$		A1 ft			
	$\frac{2}{9}ma^2\omega^2 = \frac{1}{3}mga\sin\theta$					
	$\omega = \sqrt{\frac{3g\sin\theta}{2a}}$		A1	3	Condone $\omega^2 = \frac{3g\sin\theta}{2a}$	
	OR $\omega \frac{d\omega}{d\theta} = \frac{3g\cos\theta}{4a}$	M1				-
	$\frac{1}{2}\omega^2 = \int \frac{3g\cos\theta}{4a} d\theta$					
	$=\frac{3g\sin\theta}{4a} \ (+C)$	A1				
	$\omega = \sqrt{\frac{3g\sin\theta}{2a}}$	A1				
(iii)	Acceleration parallel to rod is $(\frac{1}{3}a)\omega^2$		B1	-		
	$F - mg\sin\theta = m(\frac{1}{3}a)\omega^2$		M1		Radial equation with 3 terms	
	$F -mg\sin\theta = \frac{1}{2}mg\sin\theta$			ļ		
	$F = \frac{3}{2}mg\sin\theta$		A1			
	Acceleration perpendicular to rod is $(\frac{1}{3}a)\alpha$		B1 ft		ft is $r \alpha$ with r the same as before	-
	$mg\cos\theta - R = m(\frac{1}{3}a)\alpha$		M1	ļ	Transverse equation with 3 terms	
	$mg\cos\theta - R = \frac{1}{4}mg\cos\theta$			ļ	· ·	
	$R=\frac{3}{4}mg\cos\theta$		A1	ļ		
				6		
	OR $R(\frac{1}{3}a) = I_G \alpha$	M1			Must use I_G	
	$R(\frac{1}{3}a) = (\frac{1}{3}ma^2) \left(\frac{3g\cos\theta}{4a}\right)$	A1		ļ		
	$R = \frac{3}{4}mg\cos\theta$	A1				_
(iv)	On the point of slipping, $F = \mu R$			η		-
	$\frac{3}{2}mg\sin\theta = \mu(\frac{3}{4}mg\cos\theta)$		M1	ļ		
	$\tan \theta = \frac{1}{2}\mu$		A1 (ag)		Correctly obtained Dependent on 6 marks earned in (iii)	

4731		Mark Scheme	$\frac{w_{MN}}{June 20}$ or $(-) mg(a + a \cos 2\theta)$
7 (i)	$GPE = (-) mg(2a\cos\theta)\cos\theta$	B1	or $(-) mg(a + a \cos 2\theta)$
	$EPE = \frac{\frac{1}{2}mg}{2a}(AR - a)^2$	M1	
	$= \frac{\frac{1}{2}mg}{2a}(2a\cos\theta - a)^2$ $V = \frac{1}{4}mga(2\cos\theta - 1)^2 - 2mga\cos^2\theta$	A1	
	$= mga(\cos^2 \theta - \cos \theta + \frac{1}{4} - 2\cos^2 \theta)$ $= mga(\frac{1}{4} - \cos \theta - \cos^2 \theta)$	A1 (ag) 4	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(\sin\theta + 2\cos\theta\sin\theta)$ $= mga\sin\theta(1 + 2\cos\theta)$	B1	
	Equilibrium when $\frac{dV}{d\theta} = 0$ ie when $\theta = 0$	M1 A1 (ag) 3	
(iii)	KE is $\frac{1}{2}m(2a\dot{\theta})^2$	B1	
	$2ma^{2}\dot{\theta^{2}} + V = \text{constant}$ Differentiating with respect to <i>t</i> ,	M1	
l	$4ma^2\dot{\theta}\ddot{\theta} + \frac{\mathrm{d}V}{\mathrm{d}\theta}\dot{\theta} = 0$	M1	(can award this M1 if no KE term)
	$4ma^{2}\dot{\theta}\ddot{\theta} + mga\sin\theta(1 + 2\cos\theta)\dot{\theta} = 0$ $\ddot{\theta} = -\frac{g}{4a}\sin\theta(1 + 2\cos\theta)$	A1 ft A1 (ag) 5	<i>SR</i> B2 (replacing the last 3 marks) for the given result correctly obtained by differentiating w.r.t. θ
(iv)	When θ is small, $\sin \theta \approx \theta$, $\cos \theta \approx 1$	M1	
	$\ddot{\theta} \approx -\frac{g}{4a}\theta(1+2) = -\frac{3g}{4a}\theta$	A1	
	Period is $2\pi \sqrt{\frac{4a}{3g}}$	A1 3	

			m	3
			$\frac{w_{MN}}{June 20}$ $\frac{1}{2} 2 \text{ non-zero terms correct} = \frac{1}{2} \frac{1}{100} \frac{1}{1$	
4732	Mark So	cheme	June 20 Nains	ð
Note: "3 sfs" r	means an answer which is equal to, or rounds to, the given a	answe <u>r. If such</u>	an answer is seen and then later rounded, apply ISW.	
1	$(0 \times 0.1) + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4$	M1	≥ 2 non-zero terms correct eg $\div 4$: M0	On
	= 2(.0) (0 ² ×0.1) +1×0.2 + 2 ² ×0.3 + 3 ² ×0.4 (= 5) - 2 ² = 1	A1 M1 A1 5	$\geq 2 \text{ non-zero terms correct} \div 4: \text{ M0}$ Indep, ft their μ . Dep +ve result $(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4: \text{M2}$ $\geq 2 \text{ non-0 correct: M1} \div 4: \text{ M0}$	n
Total	 	5		
2	UK Fr Ru Po Ca 1 2 3 4 5 or 5 4 3 2 1 4 3 1 5 2 2 3 5 1 4 Σd^2 (= 24)	M1 A1 M1	Consistent attempt rank other judgeRCFUP 3 5 2 1 4 3 1 4 5 2 1 2 3 4 5 5 4 3 2 1	
	$r_s = 1 - \frac{6 \times \text{``24''}}{5 \times (5^2 - 1)}$	M1	All 5 d^2 attempted & added. Dep ranks att'd	
	$=-\frac{1}{5}$ or -0.2	A1 5	$\begin{array}{c} \begin{array}{c} & \frac{43 - 15^2 / 5}{\sqrt{((55 - 15^2 / 5)(55 - 15^2 / 5))}} \\ \text{Corr sub in } \geq 2 \ S' \text{s} \\ \begin{array}{c} \text{M1} \\ \text{All correct:} \\ \end{array} \end{array}$	
Total		5		
3i	¹⁵ C ₇ or ¹⁵ / _{7!8!} 6435	M1 A1 2		
ii	${}^{6}C_{3} \times {}^{9}C_{4} \text{ or } {}^{6!}/_{3!3!} \times {}^{9!}/_{4!5!}$	M1	Alone except allow $\div {}^{15}C_7$ Or ${}^{6}P_3 \times {}^{9}P_4$ or ${}^{6!}/_{3!} \times {}^{9!}/_{5!}$ Allow $\div {}^{15}P_7$ NB not ${}^{6!}/_{3!} \times {}^{9!}/_{4!}$	
	2520	A1 2	362880	
Total	,	4		
4ia	¹ / ₃ oe	B1 1	B↔W MR: max (a)B0(b)M1M1(c)B1M1	
b	P(BB) + P(WB) attempted = ${}^{4}/{}_{10} \times {}^{3}/{}_{9} + {}^{6}/{}_{10} \times {}^{4}/{}_{9}$ or ${}^{2}/{}_{15} + {}^{4}/{}_{15}$ = ${}^{2}/{}_{5}$ oe	M1 M1 A1 3	Or $\frac{4}{10} \times \frac{3}{9}$ OR $\frac{6}{10} \times \frac{4}{9}$ correct NB $\frac{4}{10} \times \frac{4}{10} + \frac{6}{10} \times \frac{4}{10} = \frac{2}{5}$: M1M0A0	
с	Denoms 9 & 8 seen or implied ${}^{3}\!/_{9} \times {}^{2}\!/_{8} + {}^{6}\!/_{9} \times {}^{3}\!/_{8}$	B1 M1	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ Or $\frac{4}{10}$ Or $\frac{4}{10} \times \frac{6}{9} \times \frac{3}{9} \times \frac{4}{10} \times \frac{3}{9} \times \frac{2}{9} \times \frac{3}{9} \times \frac{3}$	
	$= \frac{1}{3}$ oe	A1 3	May not see wking	
ii	P(Blue) not constant or discs not indep, so no	B1 1	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue" NOT fixed no. of trials NOT because without repl Ignore extra	
Total		8		

4732		Mark Scheme	Or fewer in 2001 Allow digits100 to 110
5i	1991	B1 ind	Or fewer in 2001
	100 000 to 110 000	B1 ind 2	Allow digits100 to 110
iia	Median = 29 to 29.9	B1	
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
	= 7.5 to 9.5	A1	NOT from incorrect wking
	140 to 155	M1	×1000, but allow without
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77% : SC1
		5	
b	Older	B1	Or 1991 younger
	Median (or ave) greater }		Any two
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	% younger mothers less oe}	B1 3	NOT mean gter
			Ignore extra
Total		10	

				Any version All correct. Or 767-8x7.5x9
4732	Mark	< Schei	me	June 20. 73
6ia	Correct subst in \geq two <i>S</i> formulae $767 - \frac{60 \times 72}{8}$ or $\frac{227}{\sqrt{698}\sqrt{162}}$	M1		Any version All correct. Or <u>767-8x7.5x9</u> $\sqrt{((1148-8x7.5^2)(810-8x9^2))}$
	$\frac{767 - \frac{60 \times 72}{8} \text{or } \frac{227}{\sqrt{698}\sqrt{162}}}{\sqrt{(1148 - \frac{60^2}{8})(810 - \frac{72^2}{8})}} = 0.675 \text{ (3 sfs)}$	M1 A1	3	or correct substn in any correct formula for r
b	$\begin{cases} 1 \\ y \text{ always increases with } x \text{ or ranks} \end{cases}$	B1 B1	.3	+ve grad thro'out. Increase in steps.
	oe		2	Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	B1 B1	2	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because y still increasing with x oe	B1 B1	2	Σd^2 still 0. Still same order. Ignore extra NOT differences still the same. NOT ft (i)(b)
iii	13.8 to 14.0	B1	1	
iv	(iii) or graph or diag or my est	B1		Must be clear which est. Can be implied. "This est" probably \Rightarrow using equn of line
	Takes account of curve	B1	2	Straight line is not good fit. Not linear. Corr'n not strong.
Total 7i	P(contains voucher) constant oe	12 B1	r	Context essential
/1	Packets indep oe	B1 B1	2	NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT $1 - 0.9857 = 0.0143$ (see (iii))
iii	(1-0.9857)			1011 - 0.3837 - 0.0143 (see (11))
	= 0.014(3) (2 sfs)	B1ft 1		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl ${}^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25	B1 M1 M1 A1	4	or $0.75^{a} \times 0.25^{b} (a + b = 11)$ or ${}^{11}C_{6}$ dep B1
	$= 0.00669 \text{ or } 6.69 \times 10^3 \text{ (3 sfs)}$		•	
Total		9		

4732	Mark S	Scheme	June 20. Natinscioud.
8i	$\sqrt{0.04} (= 0.2)$ (1 - their $\sqrt{0.04}$) ²	M1 M1	40.
ii	$= 0.64$ $1 - p \text{ seen} \qquad \text{M1 for either} \\ 2p(1-p) = 0.42 \text{ or } p(1-p) = 0.21 \text{ oe} \\ 2p^2 - 2p + 0.42(= 0) \text{ or } p^2 - p + 0.21(= 0) \\ 2\pm \sqrt{((-2)^2 - 4 \times 0.42)} \text{ or } 1\pm \sqrt{((-1)^2 - 4 \times 0.21)} \\ 2 \times 2 \qquad 2 \times 1 \\ \text{or } (p-0.7)(p-0.3)=0 \text{ or } (10p-7)(10p-3)=0 \\ p = 0.7 \text{ or } 0.3$	A1 3 B1 M1 M1 A1 5	2pq= 0.42 or pq =0.21 Allow pq=0.42 or opp signs, correct terms any order (= 0) oe Correct Dep B1M1M1 Any corr subst'n or fact'n Omit 2 in 2 nd line: max B1M1M0M0A0 One corr ans with no or inadeq wking: SC1 eg $0.6 \times 0.7 = 0.42 \Rightarrow p = 0.7$ or 0.6 $p^2 + 2pq + q^2 = 1$ B1 $p^2 + q^2 = 0.58$ } $p = 0.21/q$ } $p^4 - 0.58p^2 + 0.0441 = 0$ M1 corr subst'n or fact'n M1 1 - p seen B1 2p(1 - p) = 0.42 or $p(1 - p) = 0.21$ M1 $p^2 - p = -0.21$ $p^2 - p + 0.25 = -0.21 + 0.25$ oe } M1
			OR $(p - 0.5)^2 - 0.25 = -0.21$ oe } $(p - 0.5)^2 = 0.04$ M1 $(p - 0.5) = \pm 0.02$ p = 0.3 or 0.7 A1
Total 9ia	1 / 1/5	8 M1	
b	$= 5$ $\binom{4}{5}^{3} \times \frac{1}{5}$ $= \frac{64}{625} \text{ or } 0.102 \text{ (3 sfs)}$	A1 2 M1 A1 2	
с	$(^{4}/_{5})^{4}$	M1	or 1- $(^{1}/_{5} + ^{4}/_{5} \times ^{1}/_{5} + (^{4}/_{5})^{2} \times ^{1}/_{5} + (^{4}/_{5})^{3} \times ^{1}/_{5})$ NOT 1 - $(^{4}/_{5})^{4}$
iia	$={}^{256}/_{625} \text{ or } a.r.t \ 0.410 \ (3 \text{ sfs}) \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p$	B1 1	$P(Y=1)+P(Y=3)+P(Y=5)=p+q^{2}p+q^{4}p$ $p, p(1-p)^{2}, p(1-p)^{4}$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
b	Recog that c.r. = q^2 or $(1-p)^2$	M1	
	$S_{\infty} = \frac{p}{1-q^2}$ or $\frac{p}{1-(1-p)^2}$	M1	
	$P(odd) = \frac{1-q}{1-q^2}$	M1	$\begin{pmatrix} = \underline{p} \\ (\underline{p} - p^2) \end{pmatrix} = \underline{p} \\ p(2 - p)$
	$= \frac{1-q}{(1-q)(1+q)}$ Must see this step for A1 (= $\frac{1}{1+q}$ AG)	A1 4	$\begin{pmatrix} = 1 \\ 2 - p \end{pmatrix} = \frac{1}{2 - (1 - q)}$

4732	Mark Scheme	June 20. June 20.
Total	11	DUC
		·com

					m	
					W.M.	122
4733		Mark SchemeMm. TymathB148.3 seenM1Biased estimate: 162.2016: can get B1M1M0M1Multiply by $n/(n-1)$ A1Answer 164 or 163.8 or 163.84			the sthe	
1	(i)	$\hat{\mu} = 4830.0/100 = 48.3$	B1		48.3 seen	-Clour
		$249509.16/100 - (\text{their } \bar{x}^2)$	M1		Biased estimate: 162.2016: can get B1M1M0	^{У.} Со.
		× 100/99	M1		Multiply by $n/(n-1)$	m
		= 163.84	A1	4	Answer, 164 or 163.8 or 163.84	
	(ii)	No, Central Limit theorem applies,	B2	2	"No" with statement showing CLT is understood	
	(11)	so can assume distribution is		-	(though CLT does not need to be mentioned)	
		normal			[SR: No with reason that is not wrong: B1]	
2		B(130, 1/40)	B1		B(130, 1/40) stated or implied	
		$\approx Po(3.25)$	M1		Poisson, or correct N on their $B(n, p)$	
		$e^{-\lambda} \frac{\lambda^4}{2}$	A1√		Parameter their <i>np</i> , <i>or</i> correct parameter(s) $$	
		4!	M1		Correct formula, or interpolation	
		= 0.180	A1	5	Answer, 0.18 or a.r.t. 0.180	
					[SR: N(3.25, 3.17) or N(3.25, 3.25): B1M1A1]	
3	(i)	Binomial	B1	1	Binomial stated or implied	
	(ii)	Each element equally likely	B1		All elements, or selections, equally likely stated	
		Choices independent	B1	2	Choices independent [not just "independent"]	
	(1)		D1		[can get B2 even if (i) is wrong]	
4	(i)	<i>Two of:</i> Distribution symmetric	B1	•	One property	
		No substantial truncation	B1	2	Another definitely different property	
		Unimodal/Increasingly			Don't give both marks for just these two "Bell-shaped": B1 only unless "no truncation"	
	(ii)	unlikely further fromµ, etc Variance 8 ² /20	M1		Standardise, allow cc, don't need <i>n</i>	
	(11)		A1		Denominator (8 or 8^2 or $\sqrt{8}$) ÷ (20 or $\sqrt{20}$ or 20^2)	
		$z = \frac{47.0 - 50.0}{\sqrt{8^2 / 20}} = -1.677$	A1		<i>z</i> -value, a.r.t. -1.68 or $+1.68$	
			A1	4	Answer, a.r.t. 0.953	
_	(1)	$\Phi(1.677) = 0.9532$	D1	1		
5	(i)	$H_1: \lambda > 2.5 \text{ or } 15$	B1	1	$\lambda > 2.5$ or 15, allow μ , don't need "H ₁ "	
	(ii)	Use parameter 15 $P(> 23)$	M1 M1		$\lambda = 15$ used [N(15, 15) gets this mark only]	
		1 (~ 23)			Find P(> 23 or \ge 23), final answer < 0.5	
		1 - 0.9805 = 0.0195 or $1.95%$	A1	3	eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02	
		1 0.9003 0.0195 01 1.9570		U	[SR: 2-tailed, 3.9% gets 3/3 here]	
	(iii)	$P(\le 23 \mid \lambda = 17) = 0.9367$	M1		One of these, or their complement: .9367, .8989,	
	(111)	$P(\le 23 \mid \lambda = 18) = 0.8989$			0.9047, 0.8551, .9317, .8933, .9907, .9805	
		Parameter = 17	A1		Parameter 17 [17.1076], needs $P(\le 23)$, cwo	
					[SR: if insufficient evidence can give B1 for 17]	
		$\lambda = 17/6 \text{ or } 2.83$	M1	3	Their parameter $\div 6$ [2.85]	
					[SR: Solve $(23.5 - \lambda)/\sqrt{\lambda} = 1.282$ M1; 18.05 A0]	
6	(i)	$H_0: p = 0.19, H_1: p < 0.19$	B2		Correct, B2. One error, B1, but x or \overline{x} or r: B0	
		where p is population proportion	M1		Binomial probabilities, allow 1 term only	
		$0.81^{20} + 20 \times 0.81^{19} \times 0.19$	A1		Correct expression $[0.0148 + 0.0693]$	
		= 0.0841	A1		Probability, a.r.t. 0.084	
		Compare 0.1	B1		Explicit comparison of "like with like"	
	or	Add binomial probs until ans > 0.1	A1		$[P(\le 2) = 0.239]$	
		Critical region ≤ 1	B1			
		Reject H ₀	M1	c	Correct deduction and method [needs $P(\le 1)$]	
		Significant evidence that proportion	A1√	8	Correct conclusion in context	
	(ii)	of <i>e</i> 's in language is less than 0.19			[SR: N(3.8, 3.078): B2M1A0B1M0]	
	(ii)	Letters not independent	B1	1	Correct modelling assumption, stated in context	
					Allow "random", "depends on message", etc	

4733	Mark Sche	me June 20. Marking Horizontal straight line Positive parabola, symmetric about 0 Completely correct including correct relationship
7 (i)	B1 B1 B1 3	Horizontal straight line Positive parabola, symmetric about 0 Completely correct, including correct relationship between two Don't need vertical lines or horizontal lines outside range, but don't give last B1 if horizontal line continues past "±1"
(ii) S is equally likely to take any value in range, T is more likely at extremities	B2 2	Correct statement about distributions (<i>not</i> graphs) [Partial statement, or correct description for one only: B1]
(iii) $\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x^{3}}{2}\right]_{t}^{1}$ $\frac{1}{2}(1-t^{3}) = 0.2 \text{ or } \frac{1}{2}(t^{3}+1) = 0.8$ $t^{3} = 0.6$ $t = 0.8434$	M1 B1 M1 M1 A1 5	Integrate $f(x)$ with limits $(-1, t)$ or $(t, 1)$ [recoverable if t used later] Correct indefinite integral Equate to 0.2, or 0.8 if $[-1, t]$ used Solve cubic equation to find t Answer, in range $[0.843, 0.844]$
8 (i) $\frac{64.2-63}{\sqrt{12.25/23}} = 1.644$ P(z > 1.644) = 0.05	M1dep A1 dep M1 A1 4	Standardise 64.2 with \sqrt{n} z = 1.644 or 1.645, must be + Find $\Phi(z)$, answer < 0.5 Answer, a.r.t. 0.05 or 5.0%
(ii) (a) $63 + 1.645 \times \frac{3.5}{\sqrt{50}} \ge 63.81$	M1 B1 A1 3	$63 + 3.5 \times k / \sqrt{50}$, k from Φ^{-1} , not – k = 1.645 (allow 1.64, 1.65) Answer, a.r.t. 63.8, allow >, ≥, =, c.w.o.
(b) $P(< 63.8 \mu = 65)$ $\frac{63.8 - 65}{3.5 / \sqrt{50}} = -2.3956$ 0.0083	M1 M1 A1 A1 4	Use of correct meaning of Type II Standardise their <i>c</i> with $\sqrt{50}$ $z = (\pm) 2.40$ [or -2.424 or -2.404 etc] Answer, a.r.t. 0.008 [eg, 0.00767]
(iii) B better: Type II error smaller (and same Type I error)	B2√ 2	This answer: B2. "B because sample bigger": B1. [SR: Partial answer: B1]
9 (a) $np > 5$ and $nq > 5$ 0.75 $n > 5$ is relevant	M2	Use either $nq > 5$ or $npq > 5$ [SR: If M0, use $np > 5$, or " $n = 20$ " seen: M1]
(b) (i) $70.5 - \mu = 1.75\sigma$ $\mu - 46.5 = 2.25\sigma$ Solve simultaneously $\mu = 60$ $\sigma = 6$	$ \begin{array}{c c} A1 & 3 \\ \hline M1 \\ A1 \\ B1 \\ M1 \\ A1 \\ A1 \\ 6 \end{array} $	Final answer $n \ge 20$ or $n \ge 20$ only Standardise once, and equate to Φ^{-1} , $\pm cc$ Standardise twice, signs correct, cc correct Both 1.75 and 2.25 Correct solution method to get one variable μ , a.r.t. 60.0 or ± 154.5 σ , a.r.t. 6.00 [Wrong cc (below): A1 both] [SR: σ^2 : M1A0B1M1A1A0]
(ii) $np = 60, npq = 36$ q = 36/60 = 0.6 p = 0.4 n = 150	$\begin{array}{c} M1dep\\ depM1\\ A1\\ A1 \end{array}$	$np = 60 \text{ and } npq = 6^2 \text{ or } 6$ Solve to get q or p or n $p = 0.4 \sqrt{\text{ on wrong cc or } z}$ $n = 150 \sqrt{\text{ on wrong cc or } z}$
σ	μ	$q p(\pm 0.01) n$
70.5 46.5 6	60.062	0.6 0.4 150
71 46 6.25 71.5 46.5 6.25	60.562	5504 0.3496 171.8 5450 0.3550 170.6
70.5 45.5 6.25	59.562 5 0.0	5558 0.3442 173.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7027 0.2973 202.2 5050 0.3950 150.6

4734	Mark Sch	neme		June 20. For sum of integrals =1
	$\int_{0}^{1} a dx + \int_{1}^{\infty} \frac{a}{x^{2}} dx = 1$	M1		For sum of integrals =1
	$\begin{bmatrix} ax \end{bmatrix}_0^1 + \begin{bmatrix} -\frac{a}{x^3} \end{bmatrix}_1^\infty = 1$	A1		For second integral.
	$a + a = 1$ $a = \frac{1}{2}$	A1 A1	4	For second <i>a</i> Or from F(x) M1A1 then $F(\infty)=1$ M1, $a=\frac{1}{2}$ A1
	(i) $\overline{X}_I \square N(5, \frac{0.7^2}{20})$	B1		If no parameters allow in (ii)
	$\overline{X}_E \square \operatorname{N}(4.5, \frac{0.5^2}{25})$	B1	2	If 0.7/20, 0.5/25 then B1 for both, with means in (ii)
	(ii) Use $\overline{X}_I - \overline{X}_E \Box N(0.5, \sigma^2)$ $\sigma^2 = 0.49/20 + 0.25/25$ 1- $\Phi([1-0.5]/\sigma)$ = 0.0036 or 0.0035	M1A1 B1 M1 A1	5	OR $\overline{X}_I - \overline{X}_E - 1 \square$ N(-0.5, σ^2) cao RH probability implied. If 0.7, 0.5 in σ^2 , M1A1B0M1A1 for 0.165
	Assumes differences form a random sample from a normal distribution. $H_0: \mu = 0, H_1: \mu > 0$ $\overline{x} = 17.2/12$; $s^2 = 10.155$ AEF	B1 B1B1	B1	Other letters if defined; or in words Or $(12/11)(136.36/12-(17.2/12)^2)$ aef
	EITHER: $t = \frac{\overline{x}}{\sqrt{s^2/12}}$ (+ or -)	M1		With 12 or 9.309/11
	=1.558 1.363 seen 1.558 > 1.363, so reject H_0 and accept that there that the readings from the aneroid device overestimate blood pressure on average B1	A1 B1	v	Must be positive. Accept 1.56 Allow CV of 1.372 or 1.356 evidence Explicit comparison of CV(not - vith +) and conclusion in context.
	OR: For critical region or critical value of \overline{x} 1.363 $\sqrt{(s^2/12)}$ Giving 1.25(3) Compare 1.43(3) with 1.25(3) Conclusion in context	M1B1 A1 B1√	8	B1 for correct <i>t</i>

4734				Mark Scheme	Tuo correct			
4	(i)		F	roper			· · · · · · · · · · · · · · · · · · ·	
		р	Р 31	F	42	D1		True comont
	Trial	Р	31	11	42	B1		Two correct
		F	5	13	18	B1		Others correct
			36	24	60		2	
				ts and Pro	oper results	3		
	are ind E-valu			16.8		M1		One correct. Ft marginals in (i)
	2		10.8	7.2		A1		All correct
	$\gamma^2 = 5.2$	$3^{2}(25)$	$2^{-1}+10$.8 ⁻¹ +16.8	$(1+7.2^{-1})$	M1		Allow two errors
	λ	- (,,)	A1		With Yates' correction
	= 9.	289				A1		art 9.29
				with 7.87		M1		Or 7.88
	There indepe			hat result	s are not	A1 $$	7	Ft χ^2_{cale}
	(i) e ^{-µ} =	= 0.4	5			M1		
			$\dot{p} \approx 0.80$	AG		A1	2	0.799 or 0.798 or better seen
	(ii) μ_U	≈ 1.8				B1		
	Total,	$T \sim P$	0(2.6)			M1		May be implied by answer 0.264
	P(>3)	= 0.2				A1	3	From table or otherwise
	(iii) e ⁻²	^{2.6} 2.6 ⁶	/6!			B1		Or 0.318 from table
	-	^{5.2} 5.2 ⁴				B1		
				abilities	0.0054	M1	4	
	Answe	ers ro	unaing	10 0.0053	or 0.0054	A1	4	

hun myr. June 20.	
".m.	34 h
June 20	nar Mar

4734	Mark Sch	ıeme		aef With 200 or 199
6	(i) $\hat{p} = 62/200 = 0.31$	B1		aef
	Use $\hat{p}_{\alpha} \pm z \sqrt{\frac{\hat{p}_{\alpha}(1-\hat{p}_{\alpha})}{200}}$	M1		With 200 or 199
	<i>z</i> =1.96	B1		Seen
	Correct variance estimate	A1√		ft \hat{p}
	(0.2459,0.3741)	A1	5	art (0.246,0.374)
	(ii)EITHER: Sample proportion has an approximate normal distribution			
	OR: Variance is an estimate	B1	1	Not \hat{p} is an estimate, unless variance mentioned
	(iii) H ₀ : $p_{\alpha} = p_{\beta}$, H ₁ : $p_{\alpha} \neq p_{\beta}$			
	$\hat{p} = (62+35)/(200+150)$	B1		aef
	EITHER: $z=(\pm) \frac{62/200-35/150}{\sqrt{\hat{p}\hat{q}(200^{-1}+150^{-1})}}$	M1		s^2 with, \hat{p} , 200, 150 (or 199, 149)
		B 1√		Evidence of correct variance estimate. Ft \hat{p}
	=1.586	A1		Rounding to 1.58 or 1.59
	(-1.96 \leq) 1.586 \leq 1.96 Do not reject H ₀ - there is insufficient	M1		Correct comparison with ± 1.96
	bo not reject H_0 - there is insufficient evidence of a difference in proportions.	A1		SR: If variance $p_1q_1/n_1+p_2q_2/n_2$ used then: B0M1B0A1(for z=1.61 or 1.62)M1A1 Max 4/6.
	OR: p_{sa} - $p_{s\beta}$ = zs	M1		
	$s = \sqrt{(0.277 \times 0.723(200^{-1} + 150^{-1}))}$	B1		Ft \hat{p}
	CV of $p_{sa} - p_{s\beta} = 0.0948$ or 0.095	A1		
	Compare $p_{s\alpha} - p_{s\beta} = 0.0767$ with their 0.0948 Do not reject H ₀ and accept that there is insufficient evidence of a difference in	M1		
	proportions	A1	6	Conditional on z=1.96

				mm
4734	Mark So	cheme		June 20
7 (i) G	$ \begin{aligned} (y) &= P(Y \le y) \\ &= P(X^2 \ge 1/y) [\text{or } P(X > 1/\sqrt{y})] \\ &= 1 - F(1/\sqrt{y}) \\ &= \begin{cases} 0 & y \le 0, \\ y^2 & 0 \le y \le 1, \\ (1 & y > 1.) \end{cases} \end{aligned} $	M1 A1 A1		May be implied by following line Accept strict inequalities
	C C C C C C C C C C C C C C C C C C C	A1	4	Or $F(x)=P(X \le x) = P(Y \ge 1/x^2)$ M1 =1 - P(Y < 1/x^2) A1 =1-G(y) ;etc A1 A1
	ifferentiate their $G(y)$ tain $g(y)=2y$ for $0 < y \le 1$ AG	M1	A1	2 Only from G correctly
(iii)∫	$\int_{0}^{1} 2y (\sqrt[3]{y} \mathrm{d}y)$	M1		Unsimplified, but with limits
=[6y ^{7/3} /7]	B1		OR: Find f(x), $\int_{1}^{\infty} x^{-2/3} f(x) dx$ M1
=	⁶ / ₇	A1	3	$= [4x^{\cdot 14/3}/(14/3)]; {}^{6}/_{7} B1A1$ OR: Find H(z), Z= Y ^{1/3}
Multipl to giv	$0 \le y < 25) = \Phi(0) - \Phi(-5/\sqrt{20}))$ y by 50 e 18.41 AG or 25 $\le y < 30$ and 6.59 for $y < 20, y \ge 30$	M1 A1 A1 A1	4	
(ii) H	$_{0}$: N(25,20) fits data	B1		OR <i>Y</i> ~ N(25,20)
	59 ² /6.59 + 8.59 ² /18.41+6.41 ² /18.41 +1.41 ² /6.59 497	M1√ A1		ft values from (i) art 8.5
	r > 7.815 pt that N(25,20) is not a good fit	M1 A1	5	
(iii) U z = 2.	Use $24.91 \pm z\sqrt{(20/50)}$ 326	 B1	M1	With $\sqrt{(20/50)}$
	4,26.38)	A1	3	art (23.4,26.4) Must be interval
	to- Sample size large enough to apply CLT le mean will be (approximately) normally	B1		Refer to large sample size
	but the mean will be (approximately) normally but distribution of Y	B1	2	Refer to normality of sample mean

Statistics 4

1 (i) Use $P(A' \cap B') = 1 - P(A \cup B)$ Use $P(A \cap B) = P(A) + P(B) - P(A \cup A)$	$B) \qquad \begin{array}{c} M1 \\ M1 \\ A1 3 \end{array}$	$Or \ c = 1 - P(A \cup B)$
= c - 0.1		
(ii) $P(B A) = (c - 0.1)/0.3$ Use $0 \le p \le 1$	$ \begin{array}{c} \text{B1}\\ \text{M1}\\ \text{A1} 3 \end{array} $	Shown clearly
to obtain $0.1 \le c \le 0.4$ AG	A1 3	
2 $H_0: m_n = m_s$, $H_1: m_n \neq m_s$	B1	Medians; both hypotheses
Use Wilcoxon rank sum test		'Population medians' if words
59 64 68 77 80 85 88 90 98 N N N S N S N S S	M1 A1	Rank and identify M0 if normal approx. used
$R_m = 4 + 6 + 8 + 9 = 27$	B1	wie in normal approx. used
40 - 27 = 13		
W = 13	B1	
Compare correctly with correct CV, !2	M1	Quote critical region or state
Do not reject H_0 . There is no evidence of a		that 13 > 12. M0 if W=27
difference in the median pulse rates of the two populations.	A1 7	Conclusion in context.
3 (i) Use marginal distributions to obtain	M1 /	
E(X) = -0.4, E(Y) = 1.5	A1A1	
E(XY) = -0.24 + 0.04 - 0.52 + 0.12	M1	
Cov(X,Y) = -0.6 + 0.6 = 0 AG	A1 5	
(ii)P($X = -1 Y = 2$) = 0.26/0.5 = 0.52 P($X = 0 Y = 2$) = 0.18/0.5 = 0.36	M1	Correct method for any one
P(X=1 Y=2) = 0.12	A1 2	All correct SR: B1 if no method indicated

		www. m
4735 Mark Scheme		June June
4 (i) $H_0: m = 2.70$, $H_1: m > 2.7$ Subtract 2.70 from each value and count the number of positive signs Obtain 13 Use $B(20, \frac{1}{2})$ to obtain $P(X \ge 13) = 0.1316 (0.132)$ Compare correctly with 0.05 Do not reject H_0 . Conclude that there is insufficient evidence to claim that median level of impurity is greater than 2.70	B1 M1 A1 M1 A1 M1 A1 A1 7	Mum. Mum. Mum.JuneJuneIn terms of mediansAllow just 'medians' hereFor finding tail probabilityOr CR: $X \ge 15$ M1A1Or: N(10, 5), p=0.132
(ii)Wilcoxon signed rank testAdvantage: More powerful (uses more formation)Disadvantage: This test requires a symmetricpopulation distribution, not required for sign test	B1 B1 B1 3	Smaller P(Type II) Not 'more time taken'
5 (i) $\int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} dx = 1$, result follows	B1 1	
(ii) $M_X(t) = \int_0^\infty \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} e^{xt} dx$ $= \int_0^\infty \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x(1 - t)} dx$ x = u/(1 - t), dx = du/(1 - t) and limits unchanged $= \int_0^\infty \frac{1}{(\alpha - 1)!} \frac{u^{\alpha - 1}}{(1 - t)^{\alpha - 1}} \frac{e^{-u}}{1 - t} du$ $= \frac{1}{(\alpha - 1)!(1 - t)^{\alpha}} \int_0^\infty u^{\alpha - 1} e^{-u} du$	M1 M1 A1 A1	Attempt to differentiate
$= (1 - t)^{-\alpha} \text{AG}$ (iii) EITHER: M'(t)= $\alpha (1 - t)^{-\alpha - 1}$	A1 5	With evidence
$M''(t) = \alpha(\alpha + 1)(1 - t)^{-\alpha - 2}$ Substitute $t=0$ $E(X) = \alpha$ $Var(X) = \alpha(\alpha + 1) - \alpha^{2}$ $= \alpha$ OR: $(1 - t)^{-\alpha} = 1 + \alpha t + \frac{1}{2}\alpha(\alpha + 1)t^{2} +$ $E(X) = \alpha$ $Var(X) = E(X^{2}) - [E(X)]^{2}$	B1 B1 M1 A1 M1 A1 M1A1 B1 M1	AEF M0 if t involved

				1	っ
. I	11	n	е		~
•	~		•	- A 1	

1735 Mark S	scheme	Accept $qt^0 + pt^1$
5 (i) $q+pt$	B1 1	Accept $qt^0 + pt^1$
(ii) $(q+pt)^n (= G_S(t))$ Binomial	B1 B1 2	
(iii) $E(S)=G'(1) = np(q+p)$ = np $Var(S) = G''(1)+G'(1) - [G'(1)]^2$ = $n(n-1)p^2(p+q) + np - n^2p^2$ = npq	M1A1 A1 M1 A1 A1 6	AEF, properly obtained
(iv) $(\frac{1}{2} + \frac{1}{2}t)^{10}e^{-(1-t)}$ Find coefficient of t^2 $(1/2^{10})(1 + 10t + \frac{1}{2} \times 10 \times 9t^2)$ $e^{-1}(1 + t + \frac{1}{2}t^2)$ Required coefficient $= e^{-1}2^{-10}(1/2 + 10 + 45)$ = 0.0199	M1 M1 A1 A1 M1 A1 6	Seen May be implied OR: $P(Y=0)P(Z=2)+M1$, Z is Po(1) M1 Ans:A1A1A1;A1 Not from $e^{-(1-t)}=1-(1-t)+(1-t)^2/2$ No more than one term missing
(i) $E(T_1) = 2E(\overline{X}) = 2 \times \frac{1}{2}\theta = \theta$ (So T_1 is an unbiased estimator of θ)	M1A1 2	SR: B1 if $\overline{X} = \int_0^{\theta} \frac{x}{\theta} d\theta$
(ii) $E(U) = \int_0^\theta \frac{nu^n}{\theta^n} du \left[\frac{nu^{n+1}}{\theta^n(n+1)}\right]; \frac{n\theta}{n+1}$ $E(U^2) = \int_0^\theta \frac{nu^{n+1}}{\theta^n} du ; \qquad \frac{n}{n+2}\theta^2$ $Var(U) = E(U^2) - [E(U)]^2$ $= \frac{n\theta^2}{(n+1)^2(n+2)}AG$	M1A1A1 M1A1 A1 6	
(iii) $\operatorname{Var}(T_2) = \frac{\theta^2}{[n(n+2)]}$ $\operatorname{Var}(T_1) = 4\operatorname{Var}(X)/n ; \frac{\theta^2}{3n}$ $\operatorname{Var}(T_2)/\operatorname{Var}(T_1)$ $\frac{3}{(n+2)}$ < 1 for n > 1 So T_2 is more efficient than T_1	B1 M1A1 M1 M1A1 A1 7	For comparison of var. T_1 , T_2 Idea used.

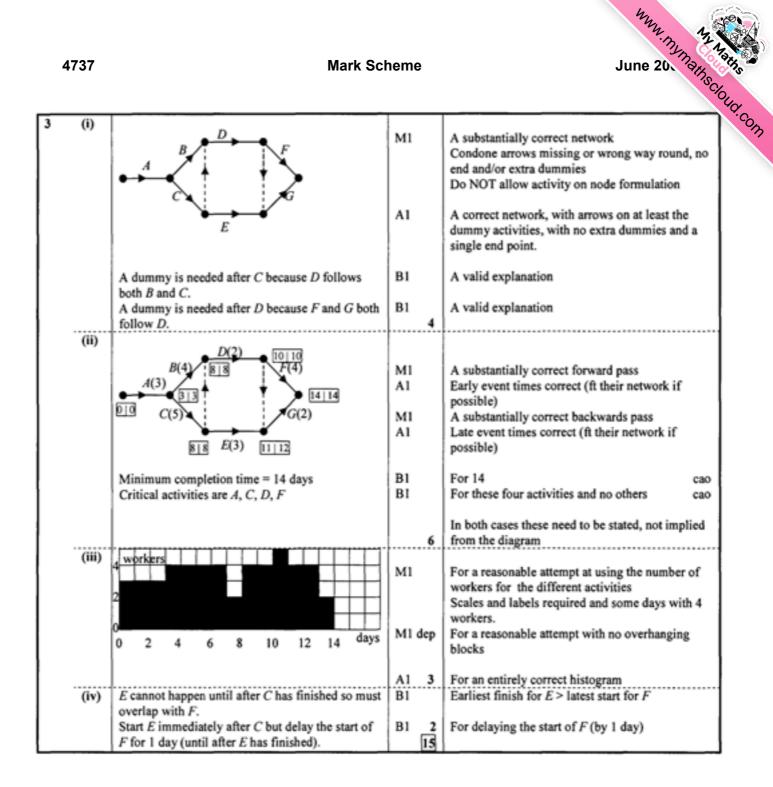
473	6	Mark Scheme	June 2007 FINAL
	SOLUTIONS 4736	D1	June 2007 FINAL
.0 0 0	 i) Example: N-P-Q-T-S-R-N or: P-Q-S-P ii) It passes through Y twice iii) 5 iv) A: neither B: semi-Eulerian iv) A: 2 B: 1 ivi) There are 4 odd nodes (N, P, S and Z) To connect these we must add 2 arcs 	B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	Any valid cycle (closed and does not repeat vertices, need not be a Hamiltonian cycle) Or, it includes a cycle (accept 'loop') If graphs are not specified, assume A is first If graphs are not specified, assume A is first $A:.1, B: \Omega \Rightarrow B1$ only. Seen or implied
0 0	i) $d+f+g=120$ ii) "(Area of) grass is not more than 4 tim decking" iii) $d \le f$ iv) $g \ge 40$ min $d = 10$ min $f = 20$ v) $5g + 10d + 20f$ or $g + 2d + 4f$ Subject to $d+f+g=120$ g-4d+s=0 d-f+t=0 $g \ge 40$, and $d \ge 10, f \ge 20, s \ge 0, t \ge 0$	1 B1 1 B1 B1 B1	For this equality. Condone an inequality Identifying the constraint in words (not just 'grass is less than or equal to 4 times decking' though) Do not accept $d < f$ Do not accept $g > 40$ $d \ge 10$ $f \ge 20$ Or any positive multiple of this For a reasonable attempt at setting up the minimisation problem using their expressions For dealing with this slack variable correctly (variables on LHS and constant on RHS) For a completely correct formulation (accept d and $f \ge 0$, or their min values for d, f)
3 (i	After 1st pass: 6 8 9 7 5 1 After 2nd pass: 6 8 9 7 5 1 After 2nd pass: 6 7 8 9 5 1 After 3rd pass: 6 7 8 9 5 3 After 4th pass: 5 6 7 8 9 4 Comparisons must be 1, 2, 3 or 4 9 7 5 9 4 Comparisons must be 0, 1, 2, 3 or 4 and no m corresponding number of comparisons 0 1 2, 3 or 4 0 0 ii) Step 1 A = 8 6 9 7 5 S 8 5 5 5 5 7 5 8 8 5 6 7 5 5 8 3 3 3 3 3 3 7 5 5 5 5 5 5 5 7 5 5 5 5 5 5 5 7 5 5 5 5 5 5	M1 M1	Bubble sort or decreasing order loses first 4 marks 1st pass correct 2nd pass correct, follow through from 1st pass 3rd pass correct, follow through from 2nd pass 4th pass correct Counting comparisons for at least three passes Counting swaps for at least three passes For identifying that $6 \rightarrow B$ or the sublist $\{6\}$ For identifying that $9 \rightarrow C$ or the sublist $\{9\}$
		M1 M1 A1 5 [1]	For identifying that $7 \rightarrow B$ For identifying that $5 \rightarrow B$ For the final A list or the display correct

Mark Scheme

47	'36	Mark Sch	neme	Munu,
4	(1)	P x y s t u 1 -3 5 0 0 0 0 0 1 5 1 0 0 12 0 1 -5 0 1 0 10	B1 B1	For \pm (-3 5) in objective row
	(ii)	031000145 $12 + 1 = 12$, $10 + 1 = 10$, $45 + 3 = 15$	B1 B1 B1	For 1 5 12, 1-5 10 and 3 10 45 in constraint rows For correct pivot choice (cao) For 'negative in top row for x', or equivalent, and a correct explanation of choice of row 'least ratio 10 + 1' (ft their pivot column)
	(iii)	P x y z s t 1 0 -10 0 3 0 30 0 0 10 1 -1 0 2 0 1 -5 0 1 0 10 0 0 25 0 -3 1 15	M1 M1 M1 A1	ft their tableau if possible for method marks For correct method evident for objective row For a correct method evident for pivot row For a correct method evident for other rows For correct tableau CAO
	(iv)	x = 10, y = 0 P = 30 11 + 5(0.2) = 12 or s = 0 11 - 5(0.2) = 10 or t = 0 3(11) + 10(0.2) = 35 or u = 10 so all the constraints are satisfied	B1 B1 6 B1	For correct values from their tableau For correct value from their tableau For showing (not just stating) that constraints are satisfied
		P = 3(11) - 5(0.2) = 32 which is bigger than 30 from (iii)	B1 2 13	For calculating 32, or equivalent (eg 3x has increased by 3 but -5y has only decreased by 1)

47	36	Mark Sch	neme	ANSWERED ON INSERT	20
5	(i)	A B		ANSWERED ON INSERT	"
		9 125	Ml	For correct initial temporary labels at F, G, I	
			М1	For correctly updating F and label at H	
		$ \begin{array}{c} D \\ \hline 8 \\ 100 \\ 100 \\ F \\ G \\ H \\ H$	A1	For all temporary labels correct (including A) (allow extra 100 at C, 105 at D, 75 at H only)	
		4 70 2 25 3 65 5 75	B1	For order of becoming permanent correct	
			B1	For all permanent labels correct (A need not have a permanent label)	
	(ii)	Shortest path from J to B: J G H E B Length of path: 125 metres Odd nodes: B C E J	B1 B1 7 B1	For correct route (condone omission of J or B) For 125 For identifying or using B C E J or implied	
		$\begin{array}{cccc} BC = 60 & BE = 35 & BJ = 125 \\ EJ = \underline{90} & CJ = \underline{95} & CE = \underline{70} \\ 150 & 130 & 195 \end{array}$	М1	For any three of these weights correct, or implied or ft from their (i)	
		Repeat BE and CJ (or BE, JI, IC)	AI	For identifying the pairing BE, CJ to repeat or	
		130 + 765 Shortest route: 895 metres	M1 A1 5	130 (not ft) For 765 + their 130 (a valid pairs total) For 895 (cao)	
	(iii)	A 40 B 30 35 60	B1	For graph structure correct	
		$ \begin{array}{c} D \\ 30 \\ F \\ 45 \\ G \\ 40 \\ H \\ 25 \\ H \\ 25 \\ H \\ 20 \\ H \\ 25 \\ H \\ 25 \\ H \\ 20 \\ H \\ 25 \\ H \\ 20 \\ H \\ 25 \\ H \\ 20 \\ 20 \\ H \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$	М1	For a reasonable attempt at arc weights (at least 9 correct, including the three given)	
		90 25 75	Al	For all arc weights correct	
		Travelling salesperson problem	4 B1 16	For identifying TSP by name	
	_	Travening salesperson problem	51 10	Tor identifying for by name	

4736	Mark Sch	neme	ANSWERED ON INSERT
6 (i)			ANSWERED ON INSERT
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	мı	For choosing row C in column A
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 dep	For choosing more than one entry from column C
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	For correct entries chosen
	Order: A C E D B F Minimum spanning tree:	B1	For correct order, listed or marked on arrows or table, or arcs listed AC CE ED CB DF
	A C E F	B1	For tree (correct or follow through from table, provided solution forms a spanning tree)
	Total weight: 23 miles	B1 6	For 23 (or follow through from table or diagram, provided solution forms a spanning tree)
(ii)	MST for reduced network = 18 Two shortest arcs from $B = 5 + 6 = 11$ Lower bound = 29 miles	MI MI A1 3	For their 18 seen or implied For 11 seen or implied For 29 (cao)
(iii)	F - D - E - C - A - B - F	MI AI	For F-D-E-C-A-B For correct tour
	8 + 3 + 4 + 3 + 6 + 14 = 38 miles	M1 4 A1 13	For a substantially correct attempt at sum For 38 (cao)



Mark Scheme

4737					Mark Sc	cheme)	June 2007 FINAL	A Mar
S	OLUTIC	ONS		4737	J	D2		June 2007 FINAL	SCIOL
(1)	A B	ouse 1 1 500 300 500	house 2 400 200 300	house 3 700 400 750	house 4 600 350 680	B1		For copying the table, with row and column headings (accept consistent scalings)	7
(ii)	D Reduce	0	0	0	0	B1	2	For dummy row (Daniel) with all equal values	
		100 100 200	0 0	300 200 450	200 150 380	мı		For a substantially correct attempt at reducing rows and columns	
	Colum	0	0	0	0	Al		For correct reduced cost matrix (ft scalings) Do not treat as MR	
		ns are alre out using t 100 200		300 200 450	200 150 380	мı		For covering zeros using minimum number of lines, clearly seen or implied from augmenting	
	Augmer	ent by 100	ļ			мі	lep	For a single augmentation by 100 (ft their matrix (accept either way of augmenting by 100)	x)
		0 0 100 0	0 0 0 0 100	200 100 350 0 0	100 50 280 0	Al	ft 3	For a correct augmented matrix (ft their matrix)	
(ii)	Cross of	out using t	three lines ↓ 0 0 0	200 100 350	100 50 280	м1		For covering zeros using minimum number of lines a second time, clearly seen or implied from augmenting	a
	Augmen	nt by 50 0 100 50		150 50 300 0 0	50 0 230 0	MI d		For a single augmentation by 50 (ft their matrix) (accept either way of augmenting by 50) For a correct augmented matrix (ft their matrix)	
	Comple	ete matchi			-				
		0 100 50		150 50 300 0 0	50 0 230 0] _{B1}	4	For a complete matching achieved, must follow from an attempt at reducing or augmenting a matrix, not just implied from a list of the matching	
(iii)	Allclear Brighter Clean4U Cost = 1	enupp sl U sl	should clea should clea should clea	an house 4	1	B1 B1	2	For A = 1, B = 4, C = 2 (may also list D = 3) ci For 1150 ci	ао

4737	Mark Sch	neme		Www.mymainson June 20. The second se	with source
(i)	4p - (1-p)	M1		For $4p - 1(1-p)$ or equivalent, seen or implied	
	= 5p - 1	A1		For 5p - 1 or -1 + 5p cao	
	-2p + 5(1-p) = 5 - 7p	B1		For any form of this expression cao	1
	4(1-p) = 4 - 4p	B1	4	For any form of this expression cao	1
(ii)				For correct structure to graph with a horizontal	1
. ,	E	MI		axis that extends from 0 to 1, but not more than	
	5.			this, and with consistent scales.	1
		Al	ft	For line $E = 5p - 1$ plotted from (0,-1) to (1, 4)	
		Al	ft	For line $E = 5 - 7p$ plotted from (0, 5) to (1,-2)	
	0	Al	ft	For line $E = 4 - 4p$ plotted from (0, 4) to (1, 0)	
				L all data and a second as A from (D)	
			4	In all three cases, correct or ft from (i)	4
	p = 0.5	BI	1	For this or ft their graph	1
(iii)	5(0.5) - 1	MI		For substituting their p into any of their equations	
	= 1.5 points not come	AI		(must be seen, cannot be implied from value) For 1.5 cao	1
	= 1.5 points per game Bea may not play her best strategy	B1		For 1.5 cao For this or equivalent	
	bea may not play her best strategy	DI	3	Describing a mixed strategy that involves Z	1
(iv)	1.5	B1	ft	Accept -1.5, ft from (iii)	
(11)	If Amy plays using her optimal strategy,			construction (m)	
	Bea should never play strategy Z	MI		For identifying that she should not play Z	1
	Assuming that Bea knows that Amy will make a			, ,	
	random choice between P and Q so that each has			For a full description of how she should play	1
	probablility 0.5, it does not matter how she chooses				1
	between strategies X and Y.			(If the candidate assumes that Bea does not know	4
				then Bea should play P with probability $\frac{7}{12}$ and	
			3	Q with probability $\frac{5}{12}$).	
			13		1

4	737					ark Sch	eme	MMW. My Marins June 20. Marinscioud.oc ANSWERED ON INSERT	
4	(i)	stage	state	action	working	minimax		ANSWERED ON INSERT	"
1		— —	0	0	4	4		Values only credited when seen in table	
		1	1	0	3	3			
1			2	0	2	2			
				0	max(6,4) = 6		1		
I.			0	1	max(2,3) = 3	3	1		
1				2	max(3,2) = 3		_		
1	1			0	max(2,4) = 4		мі	For calculating the maxima as 4, 4, 5	
	1	2	1	1	max(4,3) = 4	4	A1 2	For calculating the minimax as 4	
1			<u> </u>	2	max(5,2) = 5	3	B1	For completing 4, 3, 2 in the brackets	
			2	0	max(2,4) = 4 max(3,3) = 3		мі	For calculating the maxima as 4, 3, 4 (method)	
1		1	1 2	2	max(3,3) = 3 max(4,2) = 4	3	A1 3	For calculating the minimax as 3 cao	
1		<u> </u>		0	max(4,2) = 4 max(5,3) = 5	<u> </u>	B1	For using their minimax values from stage 2	
I.		3	0	1	max(5,4) = 5		мі	For calculating the maxima for their values	
1		L _	ľ	2	max(2,3) = 3	3	A1 A1 4	For calculating the maxima as 5, 5, 3 cao For calculating the minimax as 3 cao	
		3 (0; 0) - (1; 1) - (2	2; 2) - (3; 0			M1 A1 M1 dep A1 4	For the value from their tabulation For 3 (irrespective of their tabulation) cao For reading route from their tabulation For this route (irrespective of their tabulation) cao	
	(iii)		(2; 0)	6 3	(1; 0)		BI	For the graph structure correct	
		(3; 0)	(2)		(1; 1)	((0; 0)	мі	For a substantially correct attempt at the weights (no more than two definite errors or omissions)	
			(2; 2)	<i>√</i> ³ ,	2(1; 2)		Al 3 16	For weights unambiguously correct	

4737	Mark Scl	Mark Scheme					
5 (i)				ANSWERED ON INSERT For this route (not in reverse) cao	.0		
(ii)	S-E-I-T 6 litres per second	B1 B1	•	For this route (not in reverse) cao For 6			
(11)	From A to G		2	For direction AG			
(iii)	6+2+4+0+8	MI	-	For a substantially correct attempt with DF = 0			
()		MI		For dealing with EI (= 8 or = 2 + 6)			
	= 20 litres per second	A1 3	3	For 20 cao			
				Method marks may be implied from answer			
(iv)	eg flow 5 along $S - A - G - T$	MI	.	For describing a valid flow augmenting route			
	and 2 along $S - C - F - H - G - T$	A1 2	1	For correctly flowing 7 from S to T			
	Diagram correctly augmented	MI		For a reasonable attempt at augmenting a flow			
		M1		For correctly augmenting a flow			
		AI 3	3	For a correct augmentation by a total of 7			
	Cut {S, A, B, C, D, E, F, G, H, I}, {T}	B1	-	For identifying cut or arcs GT and IT			
	This cut has a value of 13 and the flow already	BI		For explaining how this shows that the flow is a			
	found is 6 + 7 = 13 litres per second.			maximum,			
	Or			but NOT just stating max flow = min cut			
	This is the maximum flow since the arcs GT and		2				
	IT are both saturated, so no more can flow into T.	13					

Advanced GCE Mathematics (3892 – 2, 7890 - 2) June 2007 Assessment Series

www.mymathscioud.com

	shold Marks Unit	Maximum Mark	а	b	С	d	е	u
4721	Raw	72	60	52	44	36	29	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	60	53	46	39	33	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	44	37	30	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	62	54	46	38	31	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	51	43	36	29	22	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	55	48	42	36	30	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0

Unit Threshold Marks

								www.myma.	MANSHS CIOUD CON
4734	Raw	72	56	49	42	36	30	0	1.COM
	UMS	100	80	70	60	50	40	0	
4735	Raw	72	60	51	43	35	27	0	
	UMS	100	80	70	60	50	40	0	
4736	Raw	72	62	55	48	42	36	0	
	UMS	100	80	70	60	50	40	0	
4737	Raw	72	61	53	46	39	32	0	
	UMS	100	80	70	60	50	40	0	

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890/3891/3892	300	240	210	180	150	120	0
7890/7891/7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	31.2	47.9	62.0	74.4	84.9	100	13873
3891	20.0	20.0	20.0	20.0	20.0	100	10
3892	58.5	75.6	87.9	94.7	97.5	100	1384
7890	45.3	66.9	82.2	92.4	97.7	100	9663
7891	0	0	0	100	100	100	1
7892	58.2	78.1	89.1	96.0	98.8	100	1487

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

